983 resultados para synovial fibroblasts


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To identify differentially expressed genes in synovial fibroblasts and examine the effect on gene expression of exposure to TNF-alpha and IL-1beta. Methods. Restriction fragment differential display was used to isolate genes using degenerate primers complementary to the lysophosphatidic acid acyl transferase gene family. Differential gene expression was confirmed by reverse transcription-polymerase chain reaction and immunohistochemistry using a variety of synovial fibroblasts, including cells from patients with osteoarthritis and self-limiting parvovirus arthritis. Results. Irrespective of disease process, synovial fibroblasts constitutively produced higher levels of IL-6 and monocyte chemoattractant protein 1 (MCP-1) (CCL2) than skin fibroblasts. Seven genes were differentially expressed in synovial fibroblasts compared with skin fibroblasts. Of these genes, four [tissue factor pathway inhibitor 2 (TFPI2), growth regulatory oncogene beta (GRObeta), manganese superoxide dismutase (MnSOD) and granulocyte chemotactic protein 2 (GCP-2)] were all found to be constitutively overexpressed in synoviocytes derived from patients with osteoarthritis. These four genes were only weakly expressed in other synovial fibroblasts (rheumatoid and self-limiting parvovirus infection). However, expression in all types of fibroblasts was increased after stimulation with TNF-alpha and IL-1beta. Three other genes (aggrecan, biglycan and caldesmon) were expressed at higher levels in all types of synovial fibroblasts compared with skin fibroblasts even after stimulation with TNF-alpha and IL-1. Conclusions. Seven genes have been identified with differential expression patterns in terms of disease process (osteoarthritis vs rheumatoid arthritis), state of activation (resting vs cytokine activation) and anatomical location (synovium vs skin). Four of these genes, TFPI2, GRObeta (CXCL2), MnSOD and GCP-2 (CXCL6), were selectively overexpressed in osteoarthritis fibroblasts rather than rheumatoid fibroblasts. While these differences may represent differential behaviour of synovial fibroblasts in in vitro culture, these observations suggest that TFPI2, GRObeta (CXCL2), MnSOD and GCP-2 (CXCL6) may represent new targets for treatments specifically tailored to osteoarthritis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To quantify the levels of proteoglycan 4 (PRG4) expression by subpopulations of chondrocytes from superficial, middle, and deep layers of normal bovine calf cartilage in various culture systems. Methods: Bovine calf articular cartilage discs or isolated cells were used in I of 3 systems of chondrocyte culture: explant, monolayer, or transplant, for 1-9 days. PRG4 expression was quantified by enzyme-linked immunosorbent assay of spent medium and localized by immunohistochemistry at the articular surface and within chondrocytes in explants and cultured cells. Results: Superficial chondrocytes secreted much more PRG4 than did middle and deep chondrocytes in all cultures. The pattern of PRG4 secretion into superficial culture medium varied with the duration of culture, decreasing with time in explant culture (from similar to25 mug/cm(2)/day on days 0-1 to similar to3 mug/cm(2)/day on days 5-9), while increasing in monolayer culture (from similar to1 pg/cell/day on days 0-1 to similar to7 pg/cell/day on days 7-9) and tending to increase in transplant culture (reaching similar to2 mug/cm(2)/day by days 7-9). In all of the culture systems, inclusion of ascorbic acid stimulated PRG4 secretion, and the source of PRG4 was immunolocalized to superficial cells. Conclusion: The results described here indicate that the phenotype of PRG4 secretion by chondrocytes in culture is generally maintained, in that PRG4 is expressed to a much greater degree by chondrocytes from the superficial zone than by those from the middle and deep zones. The marked up-regulation of PRG4 synthesis by ascorbic acid may have implications for cartilage homeostasis and prevention of osteoarthritic disease. Transplanting specialized cells that secrete PRG4 to a surface may impart functional lubrication and be generally applicable to many tissues in the body.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’arthrose ou ostéoarthrose (OA) est l’affection rhumatologique la plus fréquente au monde. Elle est caractérisée principalement par une perte du cartilage articulaire et l’inflammation de la membrane synoviale. L’interleukine (IL)-1ß, une cytokine pro-inflammatoire, joue un rôle très important dans la pathogenèse de l’OA. Elle exerce son action en induisant l’expression des enzymes cyclo-oxygénase 2 (COX-2), prostaglandine E synthétase microsomale 1 (mPGES-1) et l’oxyde nitrique synthétase inductible (iNOS) ainsi que la production de la prostaglandine E2 (PGE2) et de l’oxyde nitrique (NO). Ces derniers (PGE2 et NO) contribuent à la synovite et la destruction du cartilage articulaire par leurs effets pro-inflammatoires, pro-cataboliques, anti-anaboliques, pro-angiogéniques et pro-apoptotiques. Les modifications épigénétiques, telles que la méthylation de l’ADN, et l’acétylation et la méthylation des histones, jouent un rôle crucial dans la régulation de l’expression des gènes. Parmi ces modifications, l’acétylation des histones est la plus documentée. Ce processus est contrôlé par deux types d’enzymes : les histones acétyltransférases (HAT) qui favorisent la transcription et les histones déacétylases (HDAC) qui l’inhibent. L’objectif de ce travail est d’examiner le rôle des enzymes HDAC dans la régulation de l’expression de la COX-2, mPGES-1 et iNOS. Nous avons montré qu’au niveau des chondrocytes, les inhibiteurs des HDAC (iHDAC), trichostatine A (TSA) et butyrate de sodium (NaBu), suppriment l’expression de la COX-2 et iNOS au niveau de l’ARNm et protéique, ainsi que la production de la PGE2 et du NO, induites par l’IL-1ß. L’effet inhibiteur à lieu sans affecter l’activité de liaison à l’ADN du facteur de transcription NF-κB (nuclear factor κ B). La TSA et le NaBu inhibent également la dégradation induite par l’IL-1ß des protéoglycanes au niveau du cartilage. Nous avons également montré, qu’au niveau des fibroblastes synoviaux, les iHDAC, TSA, NaBu et acide valproïque (VA), suppriment l’expression de la mPGES-1 ainsi que la production de la PGE2 induites par l’IL-1ß. En utilisant diverses approches expérimentales, nous avons montré que HDAC4 est impliquée dans l’induction de l’expression de la mPGES-1 par l’IL-1ß. HDAC4 exerce son action, via son activité déacétylase, en augmentant l’activité transcriptionnelle de Egr-1 (early growth factor 1), facteur de transcription principal de l’expression de la mPGES-1. L’ensemble de ces résultats suggère que les inhibiteurs des HDAC pourraient être utilisés dans le traitement de l’OA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to its severity and increasing epidemiology, arthritis needs no description. There are various forms of arthritis most of which are disabling, very painful, and common. In spite of breakthroughs in the field of drug discovery, there is no cure for arthritis that can eliminate the disease permanently and ease the pain. The present review focuses on some of the most successful drugs in arthritis therapy and their side effects. Potential new targets in arthritis therapy such as interleukin-1β, interleukin-17A, tumor necrosis factor alpha, osteopontin, and several others have been discussed here, which can lead to refinement of current therapeutic modalities. Mechanisms for different forms of arthritis have been discussed along with the molecules that act as potential biomarkers for arthritis. Due to the difficulty in monitoring the disease progression to detect the advanced manifestations of the diseases, drug-induced cytotoxicity, and problems with drug delivery; nanoparticle therapy has gained the attention of the researchers. The unique properties of nanoparticles make them highly attractive for the design of novel therapeutics or diagnostic agents for arthritis. The review also focuses on the recent trends in nanoformulation development used for arthritis therapy. This review is, therefore, important because it describes the relevance and need for more arthritis research, it brings forth a critical discussion of successful drugs in arthritis and analyses the key molecular targets. The review also identifies several knowledge gaps in the published research so far along with the proposal of new ideas and future directions in arthritis therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intracellular pattern recognition receptors such as the nucleotide-binding oligomerization domain (NOD)-like receptors family members are key for innate immune recognition of microbial infection and may play important roles in the development of inflammatory diseases, including rheumatic diseases. In this study, we evaluated the role of NOD1 and NOD2 on development of experimental arthritis. Ag-induced arthritis was generated in wild-type, NOD1(-/-)!, NOD2(-/-), or receptor-interacting serine-threonine kinase 2(-/-) (RIPK2(-/-)) immunized mice challenged intra-articularly with methylated BSA. Nociception was determined by electronic Von Frey test. Neutrophil recruitment and histopathological analysis of proteoglycan lost was evaluated in inflamed joints. Joint levels of inflammatory cytokine/chemokine were measured by ELISA. Cytokine (IL-6 and IL-23) and NOD2 expressions were determined in mice synovial tissue by RT-PCR. The NOD2(-/-) and RIPK2(-/-), but not NOD1(-/-), mice are protected from Ag-induced arthritis, which was characterized by a reduction in neutrophil recruitment, nociception, and cartilage degradation. NOD2/RIPK2 signaling impairment was associated with a reduction in proinflammatory cytokines and chemokines (TNF, IL-1 beta, and CXCL1/KC). IL-17 and IL-17 triggering cytokines (IL-6 and IL-23) were also reduced in the joint, but there is no difference in the percentage of CD4(+) IL-17(+) cells in the lymph node between arthritic wild-type and NOD2(-/-) mice. Altogether, these findings point to a pivotal role of the NOD2/RIPK2 signaling in the onset of experimental arthritis by triggering an IL-17-dependent joint immune response. Therefore, we could propose that NOD2 signaling is a target for the development of new therapies for the control of rheumatoid arthritis. The Journal of Immunology, 2012, 188: 5116-5122.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of particulates with resident macrophages is a consistent feature in certain forms of crystal-induced inflammation, for example, in synovial tissues, lung, and the peritoneum. The mitogenic activity of basic calcium phosphate (BCP) crystals and calcium pyrophosphate dihydrate (CPPD) crystals on synovial fibroblasts has been considered relevant to the synovial hyperplasia observed in crystal-induced arthritis. The aim of the study was to determine whether microcrystals such as these could enhance macrophage survival and induce DNA synthesis, thus indicating that they may contribute to the tissue hyperplasia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this article was to assess whether matrix metalloproteinase-13 (MMP-13) is produced by cells of the peri-implant interface tissues and to further characterize these cells. Tissue specimens were collected from the bone-prosthesis interface at the time of revision surgery of clinically loosened hip and knee arthroplasties (n = 27). Synovial tissues from osteoarthritic patients and young patients with mild joint deformity were used as controls (n = 6). Tissue samples were fixed in 4% PFA, decalcified with EDTA, and embedded in paraffin. Sections (4 microm) were stained with hematoxylin/eosin and for the osteoclastic marker enzyme tartrate resistant acid phosphatase. Monocytes/macrophages were characterized with a monoclonal antibody against CD68 and mRNAs encoding MMP-13 and alpha(1) collagen I (COL1A1) were detected by in situ hybridization. Cells expressing transcripts encoding MMP-13 were found in 70% of the interface tissues. These cells colocalized with a cell population expressing COL1A1 mRNA, and were fibroblastic in appearance. MMP-13 expressing cells were found in the close vicinity of osteoclasts and multinuclear giant cells. No signals for transcripts encoding MMP-13 were detected in multinuclear giant cells or in osteoclasts. Control tissues were negative for transcripts encoding MMP-13 mRNA. Fibroblasts of the interface from aseptically loosened endoprostheses selectively express MMP-13. By the expression and the release of MMP-13, these fibroblastic cells may contribute to the local degradation of the extracellular matrix and to bone resorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotribology, the study of lubrication, wear and friction within the body, has become a topic of high importance in recent times as we continue to encounter debilitating diseases and trauma that destroy function of the joints. A highly successful surgical procedure to replace the joint with an artificial equivalent alleviates dysfunction and pain. However, the wear of the bearing surfaces in prosthetic joints is a significant clinical problem and more patients are surviving longer than the life expectancy of the joint replacement. Revision surgery is associated with increased morbidity and mortality and has a far less successful outcome than primary joint replacement. As such, it is essential to ensure that everything possible is done to limit the rate of revision surgery. Past experience indicates that the survival rate of the implant will be influenced by many parameters, of primary importance, the material properties of the implant, the composition of the synovial fluid and the method of lubrication. In prosthetic joints, effective boundary lubrication is known to take place. The interaction of the boundary lubricant and the bearing material is of utmost importance. The identity of the vital active ingredient within synovial fluid (SF) to which we owe the near frictionless performance of our articulating joints has been the quest of researchers for many years. Once identified, tribo tests can determine what materials and more importantly what surfaces this fraction of SF can function most optimally with. Surface-Active Phospholipids (SAPL) have been implicated as the body’s natural load bearing lubricant. Studies in this thesis are the first to fully characterise the adsorbed SAPL detected on the surface of retrieved prostheses and the first to verify the presence of SAPL on knee prostheses. Rinsings from the bearing surfaces of both hip and knee prostheses removed from revision operations were analysed using High Performance Liquid Chromatography (HPLC) to determine the presence and profile of SAPL. Several common prosthetic materials along with a novel biomaterial were investigated to determine their tribological interaction with various SAPLs. A pin-on-flat tribometer was used to make comparative friction measurements between the various tribo-pairs. A novel material, Pyrolytic Carbon (PyC) was screened as a potential candidate as a load bearing prosthetic material. Friction measurements were also performed on explanted prostheses. SAPL was detected on all retrieved implant bearing surfaces. As a result of the study eight different species of phosphatidylcholines were identified. The relative concentrations of each species were also determined indicating that the unsaturated species are dominant. Initial tribo tests employed a saturated phosphatidylcholine (SPC) and the subsequent tests adopted the addition of the newly identified major constituents of SAPL, unsaturated phosphatidylcholine (USPC), as the test lubricant. All tribo tests showed a dramatic reduction in friction when synthetic SAPL was used as the lubricant under boundary lubrication conditions. Some tribopairs showed more of an affinity to SAPL than others. PyC performed superior to the other prosthetic materials. Friction measurements with explanted prostheses verified the presence and performance of SAPL. SAPL, in particular phosphatidylcholine, plays an essential role in the lubrication of prosthetic joints. Of particular interest was the ability of SAPLs to reduce friction and ultimately wear of the bearing materials. The identification and knowledge of the lubricating constituents of SF is invaluable for not only the future development of artificial joints but also in developing effective cures for several disease processes where lubrication may play a role. The tribological interaction of the various tribo-pairs and SAPL is extremely favourable in the context of reducing friction at the bearing interface. PyC is highly recommended as a future candidate material for use in load bearing prosthetic joints considering its impressive tribological performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of tissue-engineered constructs for skeletal regeneration of large critical-sized defects requires the identification of a sustained mineralizing cell source and careful optimization of scaffold architecture and surface properties. We have recently reported that Runx2-genetically engineered primary dermal fibroblasts express a mineralizing phenotype in monolayer culture, highlighting their potential as an autologous osteoblastic cell source which can be easily obtained in large quantities. The objective of the present study was to evaluate the osteogenic potential of Runx2-expressing fibroblasts when cultured in vitro on three commercially available scaffolds with divergent properties: fused deposition-modeled polycaprolactone (PCL), gas-foamed polylactide-co-glycolide (PLGA), and fibrous collagen disks. We demonstrate that the mineralization capacity of Runx2-engineered fibroblasts is scaffold dependent, with collagen foams exhibiting ten-fold higher mineral volume compared to PCL and PLGA matrices. Constructs were differentially colonized by genetically modified fibroblasts, but scaffold-directed changes in DNA content did not correlate with trends in mineral deposition. Sustained expression of Runx2 upregulated osteoblastic gene expression relative to unmodified control cells, and the magnitude of this expression was modulated by scaffold properties. Histological analyses revealed that matrix mineralization co-localized with cellular distribution, which was confined to the periphery of fibrous collagen and PLGA sponges and around the circumference of PCL microfilaments. Finally, FTIR spectroscopy verified that mineral deposits within all Runx2-engineered scaffolds displayed the chemical signature characteristic of carbonate-containing, poorly crystalline hydroxyapatite. These results highlight the important effect of scaffold properties on the capacity of Runx2-expressing primary dermal fibroblasts to differentiate into a mineralizing osteoblastic phenotype for bone tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ideal dermal matrix should be able to provide the right biological and physical environment to ensure homogenous cell and extracellular matrix (ECM) distribution, as well as the right size and morphology of the neo-tissue required. Four natural and synthetic 3D matrices were evaluated in vitro as dermal matrices, namely (1) equine collagen foam, TissuFleece®, (2) acellular dermal replacement, Alloderm®, (3) knitted poly(lactic-co-glycolic acid) (10:90)–poly(-caprolactone) (PLGA–PCL) mesh, (4) chitosan scaffold. Human dermal fibroblasts were cultured on the specimens over 3 weeks. Cell morphology, distribution and viability were assessed by electron microscopy, histology and confocal laser microscopy. Metabolic activity and DNA synthesis were analysed via MTS metabolic assay and [3H]-thymidine uptake, while ECM protein expression was determined by immunohistochemistry. TissuFleece®, Alloderm® and PLGA–PCL mesh supported cell attachment, proliferation and neo-tissue formation. However, TissuFleece® contracted to 10% of the original size while Alloderm® supported cell proliferation predominantly on the surface of the material. PLGA–PCL mesh promoted more homogenous cell distribution and tissue formation. Chitosan scaffolds did not support cell attachment and proliferation. These results demonstrated that physical characteristics including porosity and mechanical stability to withstand cell contraction forces are important in determining the success of a dermal matrix material.