967 resultados para synchronization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise clock synchronization is essential in emerging time-critical distributed control systems operating over computer networks where the clock synchronization requirements are mostly focused on relative clock synchronization and high synchronization precision. Existing clock synchronization techniques such as the Network Time Protocol (NTP) and the IEEE 1588 standard can be difficult to apply to such systems because of the highly precise hardware clocks required, due to network congestion caused by a high frequency of synchronization message transmissions, and high overheads. In response, we present a Time Stamp Counter based precise Relative Clock Synchronization Protocol (TSC-RCSP) for distributed control applications operating over local-area networks (LANs). In our protocol a software clock based on the TSC register, counting CPU cycles, is adopted in the time clients and server. TSC-based clocks offer clients a precise, stable and low-cost clock synchronization solution. Experimental results show that clock precision in the order of 10~microseconds can be achieved in small-scale LAN systems. Such clock precision is much higher than that of a processor's Time-Of-Day clock, and is easily sufficient for most distributed real-time control applications over LANs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current smartphones have a storage capacity of several gigabytes. More and more information is stored on mobile devices. To meet the challenge of information organization, we turn to desktop search. Users often possess multiple devices, and synchronize (subsets of) information between them. This makes file synchronization more important. This thesis presents Dessy, a desktop search and synchronization framework for mobile devices. Dessy uses desktop search techniques, such as indexing, query and index term stemming, and search relevance ranking. Dessy finds files by their content, metadata, and context information. For example, PDF files may be found by their author, subject, title, or text. EXIF data of JPEG files may be used in finding them. User–defined tags can be added to files to organize and retrieve them later. Retrieved files are ranked according to their relevance to the search query. The Dessy prototype uses the BM25 ranking function, used widely in information retrieval. Dessy provides an interface for locating files for both users and applications. Dessy is closely integrated with the Syxaw file synchronizer, which provides efficient file and metadata synchronization, optimizing network usage. Dessy supports synchronization of search results, individual files, and directory trees. It allows finding and synchronizing files that reside on remote computers, or the Internet. Dessy is designed to solve the problem of efficient mobile desktop search and synchronization, also supporting remote and Internet search. Remote searches may be carried out offline using a downloaded index, or while connected to the remote machine on a weak network. To secure user data, transmissions between the Dessy client and server are encrypted using symmetric encryption. Symmetric encryption keys are exchanged with RSA key exchange. Dessy emphasizes extensibility. Also the cryptography can be extended. Users may tag their files with context tags and control custom file metadata. Adding new indexed file types, metadata fields, ranking methods, and index types is easy. Finding files is done with virtual directories, which are views into the user’s files, browseable by regular file managers. On mobile devices, the Dessy GUI provides easy access to the search and synchronization system. This thesis includes results of Dessy synchronization and search experiments, including power usage measurements. Finally, Dessy has been designed with mobility and device constraints in mind. It requires only MIDP 2.0 Mobile Java with FileConnection support, and Java 1.5 on desktop machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization in energy consumption of the existing synchronization mechanisms can lead to substantial gains in terms of network life in Wireless Sensor Networks (WSNs). In this paper, we analyze ERBS and TPSN, two existing synchronization algorithms for WSNs which use widely different approach, and compare their performance in large scale WSNs each of which consists of different type of platform and has varying node density. We, then, propose a novel algorithm, PROBESYNC, which takes advantage of differences in power required to transmit and receive a message on ERBS and TPSN and leverages the shortcomings of each of these algorithms. This leads to considerable improvement in energy conservation and enhanced life of large scale WSNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A system of many coupled oscillators on a network can show multicluster synchronization. We obtain existence conditions and stability bounds for such a multicluster synchronization. When the oscillators are identical, we obtain the interesting result that network structure alone can cause multicluster synchronization to emerge even when all the other parameters are the same. We also study occurrence of multicluster synchronization when two different types of oscillators are coupled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networks of biochemical reactions regulated by positive-and negative-feedback processes underlie functional dynamics in single cells. Synchronization of dynamics in the constituent cells is a hallmark of collective behavior in multi-cellular biological systems. Stability of the synchronized state is required for robust functioning of the multi-cell system in the face of noise and perturbation. Yet, the ability to respond to signals and change functional dynamics are also important features during development, disease, and evolution in living systems. In this paper, using a coupled multi-cell system model, we investigate the role of system size, coupling strength and its topology on the synchronization of the collective dynamics and its stability. Even though different coupling topologies lead to synchronization of collective dynamics, diffusive coupling through the end product of the pathway does not confer stability to the synchronized state. The results are discussed with a view to their prevalence in biological systems. Copyright (C) EPLA, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a model of identical coupled two-state stochastic units, each of which in isolation is governed by a fixed refractory period. The nonlinear coupling between units directly affects the refractory period, which now depends on the global state of the system and can therefore itself become time dependent. At weak coupling the array settles into a quiescent stationary state. Increasing coupling strength leads to a saddle node bifurcation, beyond which the quiescent state coexists with a stable limit cycle of nonlinear coherent oscillations. We explicitly determine the critical coupling constant for this transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clock synchronization is an extremely important requirement of wireless sensor networks(WSNs). There are many application scenarios such as weather monitoring and forecasting etc. where external clock synchronization may be required because WSN itself may consists of components which are not connected to each other. A usual approach for external clock synchronization in WSNs is to synchronize the clock of a reference node with an external source such as UTC, and the remaining nodes synchronize with the reference node using an internal clock synchronization protocol. In order to provide highly accurate time, both the offset and the drift rate of each clock with respect to reference node are estimated from time to time, and these are used for getting correct time from local clock reading. A problem with this approach is that it is difficult to estimate the offset of a clock with respect to the reference node when drift rate of clocks varies over a period of time. In this paper, we first propose a novel internal clock synchronization protocol based on weighted averaging technique, which synchronizes all the clocks of a WSN to a reference node periodically. We call this protocol weighted average based internal clock synchronization(WICS) protocol. Based on this protocol, we then propose our weighted average based external clock synchronization(WECS) protocol. We have analyzed the proposed protocols for maximum synchronization error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our theoretical claim that the maximum synchronization error is always upper bounded and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronization accuracy. A prototype implementation of the proposed internal clock synchronization protocol using a few TelosB motes also validates our claim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order dependencies. In this study, we propose a framework where in phase synchronization (PS) between brain regions is characterized using a new metric ``correlation between probabilities of recurrence'' (CPR) and subsequent graph-theoretic analysis of the ensuing networks. We applied this method to resting state fMRI data obtained from human subjects with and without administration of propofol anesthetic. Our results showed decreased PS during anesthesia and a biologically more plausible community structure using CPR rather than linear correlation. We conclude that CPR provides an attractive nonparametric method for modeling interactions in brain networks as compared to standard correlation for obtaining physiologically meaningful insights about brain function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A joint Maximum Likelihood (ML) estimation algorithm for the synchronization impairments such as Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO) and Symbol Timing Error (STE) in single user MIMO-OFDM system is investigated in this work. A received signal model that takes into account the nonlinear effects of CFO, SFO, STE and Channel Impulse Response (CIR) is formulated. Based on the signal model, a joint ML estimation algorithm is proposed. Cramer-Rao Lower Bound (CRLB) for the continuous parameters CFO and SFO is derived for the cases of with and without channel response effects and is used to compare the effect of coupling between different estimated parameters. The performance of the estimation method is studied through numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low complexity joint estimation of synchronization impairments and channel in a single-user MIMO-OFDM system is presented in this paper. Based on a system model that takes into account the effects of synchronization impairments such as carrier frequency offset, sampling frequency offset, and symbol timing error, and channel, a Maximum Likelihood (ML) algorithm for the joint estimation is proposed. To reduce the complexity of ML grid search, the number of received signal samples used for estimation need to be reduced. The conventional channel estimation techniques using Least-Squares (LS) or Maximum a posteriori (MAP) methods fail for the reduced sample under-determined system, which results in poor performance of the joint estimator. The proposed ML algorithm uses Compressed Sensing (CS) based channel estimation method in a sparse fading scenario, where the received samples used for estimation are less than that required for an LS or MAP based estimation. The performance of the estimation method is studied through numerical simulations, and it is observed that CS based joint estimator performs better than LS and MAP based joint estimator. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real world biological systems such as the human brain are inherently nonlinear and difficult to model. However, most of the previous studies have either employed linear models or parametric nonlinear models for investigating brain function. In this paper, a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study connectivity in the brain has been proposed. Being non-parametric, this method makes very few assumptions, making it suitable for investigating brain function in a data-driven way. CPR's utility with application to multichannel electroencephalographic (EEG) signals has been demonstrated. Brain connectivity obtained using thresholded CPR matrix of multichannel EEG signals showed clear differences in the number and pattern of connections in brain connectivity between (a) epileptic seizure and pre-seizure and (b) eyes open and eyes closed states. Corresponding brain headmaps provide meaningful insights about synchronization in the brain in those states. K-means clustering of connectivity parameters of CPR and linear correlation obtained from global epileptic seizure and pre-seizure showed significantly larger cluster centroid distances for CPR as opposed to linear correlation, thereby demonstrating the superior ability of CPR for discriminating seizure from pre-seizure. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex biological systems such as the human brain can be expected to be inherently nonlinear and hence difficult to model. Most of the previous studies on investigations of brain function have either used linear models or parametric nonlinear models. In this paper, we propose a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study seizures in the brain. The advantage of this nonparametric method is that it makes very few assumptions thus making it possible to investigate brain functioning in a data-driven way. We have demonstrated the utility of CPR measure for the study of phase synchronization in multichannel seizure EEG recorded from patients with global as well as focal epilepsy. For the case of global epilepsy, brain synchronization using thresholded CPR matrix of multichannel EEG signals showed clear differences in results obtained for epileptic seizure and pre-seizure. Brain headmaps obtained for seizure and preseizure cases provide meaningful insights about synchronization in the brain in those states. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. Comparative studies with linear correlation have shown that the nonlinear measure CPR outperforms the linear correlation measure. (C) 2014 Elsevier Ltd. All rights reserved.