939 resultados para stem cells


Relevância:

70.00% 70.00%

Publicador:

Resumo:

International audience

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step toward understanding why some women display poor lactation outcomes. Here, we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from five time points (24 h prepartum during the colostrum period, midlactation, two involutions, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (e.g., CEL, OLAH, FOLR1, BTN1A1, and ARG2), while milk cells collected during involution showed a significant downregulation of milk synthesis genes and activation of involution associated genes (e.g., STAT3, NF-kB, IRF5, and IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, while maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Commercial purity titanium with an average grain size in the low sub-micron range was produced by equal channel angular pressing (ECAP). Attachment of human bone marrow-derived mesenchymal stem cells (hMSCs) to the surface of conventional coarse grained and ECAP-modified titanium was studied. It was demonstrated that the attachment and spreading of hMSCs in the initial stages (up to 24h) of culture was enhanced by grain refinement. Surface characterization by a range of techniques showed that the main factor responsible for the observed acceleration of hMSC attachment and spreading on titanium due to grain refinement in the bulk is the attendant changes in surface topography on the nanoscale. These results indicate that, in addition to its superior mechanical properties, ECAP-modified titanium possesses improved biocompatibility, which makes it to a potent candidate for applications in medical implants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen levels are an important variable during the in vitro culture of stem cells. There has been increasing interest in the use of low oxygen to maximize proliferation and, in some cases, effect differentiation of stem cell populations. It is generally assumed that the defined pO2 in the incubator reflects the pO2 to which the stem cells are being exposed. However, we demonstrate that the pO2 experienced by cells in static culture can change dramatically during the course of culture as cell numbers increase and as the oxygen utilization by cells exceeds the diffusion of oxygen through the media. Dynamic culture (whereby the cell culture plate is in constant motion) largely eliminates this effect, and a combination of low ambient oxygen and dynamic culture results in a fourfold increase in reconstituting capacity of human hematopoietic stem cells compared with those cultured in static culture at ambient oxygen tension. Cells cultured dynamically at 5% oxygen exhibited the best expansion: 30-fold increase by flow cytometry, 120-fold increase by colony assay, and 11% of human CD45 engraftment in the bone marrow of NOD/SCID mice. To our knowledge, this is the first study to compare individual and combined effects of oxygen and static or dynamic culture on hematopoietic ex vivo expansion. Understanding and controlling the effective oxygen tension experienced by cells may be important in clinical stem cell expansion systems, and these results may have relevance to the interpretation of low oxygen culture studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 1 diabetes affects over 108,000 children, and this number is steadily increasing. Current insulin therapies help manage the disease but are not a cure. Over a child’s lifetime they can develop kidney disease, blindness, cardiovascular disease and many other issues due to the complications of type 1 diabetes. This autoimmune disease destroys beta cells located in the pancreas, which are used to regulate glucose levels in the body. Because there is no cure and many children are affected by the disease there is a need for alternative therapeutic options that can lead to a cure. Human mesenchymal stem cells (hMSCs) are an important cell source for stem cell therapeutics due to their differentiation capacity, self-renewal, and trophic activity. hMSCs are readily available in the bone marrow, and act as an internal repair system within the body, and they have been shown to differentiate into insulin producing cells. However, after isolation hMSCs are a heterogeneous cell population, which requires secondary processing. To resolve the heterogeneity issue hMSCs are separated using fluorescent- and magnetic-activate cell sorting with antigen labeling. These techniques are efficient but reduce cell viability after separation due to the cell labeling. Therefore, to make hMSCs more readily available for type 1 diabetes therapeutics, they should be separated without diminishing there functional capabilities. Dielectrophoresis is an alternative separation technique that has the capability to separated hMSCs. This dissertation uses dielectrophoresis to characterize the dielectric properties of hMSCs. The goal is to use hMSCs dielectric signature as a separation criteria rather than the antigen labeling implemented with FACS and MACS. DEP has been used to characterize other cell systems, and is a viable separation technique for hMSCs.