980 resultados para speeding of sowing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the subtropics of Australia, the ryegrass component of irrigated perennial ryegrass (Lolium perenne) - white clover (Trifolium repens) pastures declines by approximately 40% in the summer following establishment, being replaced by summer-active C4 grasses. Tall fescue (Festuca arundinacea) is more persistent than perennial ryegrass and might resist this invasion, although tall fescue does not compete vigorously as a seedling. This series of experiments investigated the influence of ryegrass and tall fescue genotype, sowing time and sowing mixture as a means of improving tall fescue establishment and the productivity and persistence of tall fescue, ryegrass and white clover-based mixtures in a subtropical environment. Tall fescue frequency at the end of the establishment year decreased as the number of companion species sown in the mixture increased. Neither sowing mixture combinations nor sowing rates influenced overall pasture yield (of around 14 t/ha) in the establishment year but had a significant effect on botanical composition and component yields. Perennial ryegrass was less competitive than short-rotation ryegrass, increasing first-year yields of tall fescue by 40% in one experiment and by 10% in another but total yield was unaffected. The higher establishment-year yield (3.5 t/ha) allowed Dovey tall fescue to compete more successfully with the remaining pasture components than Vulcan (1.4 t/ha). Sowing 2 ryegrass cultivars in the mixture reduced tall fescue yields by 30% compared with a single ryegrass (1.6 t/ha), although tall fescue alone achieved higher yields (7.1 t/ha). Component sowing rate had little influence on composition or yield. Oversowing the ryegrass component into a 6-week-old sward of tall fescue and white clover improved tall fescue, white clover and overall yields in the establishment year by 83, 17 and 11%, respectively, but reduced ryegrass yields by 40%. The inclusion of red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus) increased first-year yields by 25% but suppressed perennial grass and clover components. Yields were generally maintained at around 12 t/ha/yr in the second and third years, with tall fescue becoming dominant in all 3 experiments. The lower tall fescue seeding rate used in the first experiment resulted in tall fescue dominance in the second year following establishment, whereas in Experiments 2 and 3 dominance occurred by the end of the first year. Invasion by the C4 grasses was relatively minor (<10%) even in the third year. As ryegrass plants died, tall fescue and, to a lesser extent, white clover increased as a proportion of the total sward. Treatment effects continued into the second, but rarely the third, year and mostly affected the yield of one of the components rather than total cumulative yield. Once tall fescue became dominant, it was difficult to re-introduce other pasture components, even following removal of foliage and moderate renovation. Severe renovation (reducing the tall fescue population by at least 30%) seems a possible option for redressing this situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions: How is succession on ex-arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex-arable land, with five blocks, each containing three 10 m x 10 m experiment tal plots: natural colonization, a low- (four species) and high-diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its 'insurance effect': the high diversity mixtures were always able to compensate for the failure of some species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing pressure on crop production from the evolution of herbicide resistance, farmers are increasingly adopting Integrated Weed Management (IWM) strategies to augment their weed control. These include measures to increase the competitiveness of the crop canopy such as increased sowing rate and the use of more competitive cultivars. While there are data on the relative impact of these non-chemical weed control methods assessed in isolation, there is uncertainty about their combined contribution, which may be hindering their adoption. In this article, the INTERCOM simulation model of crop / weed competition was used to examine the combined impact of crop density, sowing date and cultivar choice on the outcomes of competition between wheat (Triticum aestivum) and Alopecurus myosuroides. Alopecurus myosuroides is a problematic weed of cereal crops in North-Western Europe and the primary target for IWM in the UK because it has evolved resistance to a range of herbicides. The model was parameterised for two cultivars with contrasting competitive ability, and simulations run across 10 years at different crop densities and two sowing dates. The results suggest that sowing date, sowing density and cultivar choice largely work in a complementary fashion, allowing enhanced competitive ability against weeds when used in combination. However, the relative benefit of choosing a more competitive cultivar decreases at later sowing dates and higher crop densities. Modelling approaches could be further employed to examine the effectiveness of IWM, reducing the need for more expensive and cumbersome long-term in situ experimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was to determine the effect of two sowing times on phytomass production of two varieties of Slylosanthes guianensis (var. pauciflora and var. vulgaris). Two experimental periods were studied (1: January - May/1998 and 2: November/1998 - March/1999) using a completely randomized factorial design 2 x 2 x 14 (two periods, two varieties and fourteen ages of evaluation), with four replications. The results showed a difference between the periods concerning the growth and development of Stylosanthes, and that period 2 was the most favourable to this forage plant. There was, also, different adaptability between the two varieties concerning the sowing times. The var. pauciflora was more adapted in period 1, and the var. vulgaris, in period 2. The data showed the possibility of selecting Stylosanthes cultivars adapted to different seasonal conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este experimento foi realizado em .iaboticabal, SP, com o objetivo de se avaliar o comportamento de dois genótipos de girassol (líeIianthus annuus L.) no tocante à produção dc matéria seca e caracte r ísticas agronômicas. Utilizou-se o híbrido Contissol 812 e a cultivar IAC-Anhandy com 80 cm entre linhas e 5 plantas por metro linear, em blocos casualizados, com quatro repetições cm cinco datas de semcadura: 2001, 2002, 05.03, 2003 e 05.04. O atraso das datas de semeadura exerceu efeito depressivo e significativo sobre a produção e distribuição de matéria seca (kg/ha) no caule, folha, capítulo e no total, reduzindo também significativamente o número de dias de emergência ao florescimento, a altura das plantas, o número de folhas, e os diãmetros do colo e do capitulo. A produ- ção média de aqüõnios foi de: 2.942, 2.005, 1.243. 1.073 e 809 kg/ha, da primeira ã última data, rcspectivamente, nos dois genótipos. Concluiu-se que os dois genótipos se comportaram de forma scmc' lhante nas diferentes datas, e que as semeaduras realizadas até o final de fevereiro foram as melhores, e nas efetuadas posteriormente, o crescimento e o desenvolvimento das plantas foram afetados negativamente, levando a produção de aqüênios a níveis indesejáveis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of trials to increase understanding of the summer dormancy trait in Dactylis glomerata was conducted. Autumn-sown reproductive and younger, spring-sown plants of 2 drought-resistant cultivars, contrasting for summer dormancy, were established and then tested in summer 2002 under long drought, drought + midsummer storm, or full irrigation. The autumn-sown reproductive plants of cv. Kasbah were summer dormant under all moisture regimes and exhibited the characteristic traits including growth cessation, rapid herbage senescence, and dehydration of surviving organs (-6.7MPa). Cultivar Kasbah used 8% less soil water over the summer and also began to rehydrate its leaf bases from conserved soil water before the drought broke. The non-dormant cv. Medly grew for 10 days longer under drought and whenever moisture was applied; Medly also responded to the storm with a decline in dehydrin expression in leaf bases, whereas no decline occurred in Kasbah, presumably because it remained dormant and therefore much drier. The irrigated, younger, spring-sown swards of cv. Kasbah had restrained growth and produced only about 25% of the herbage of cv. Medly. Drought reduced activity and growth of young plants of both cultivars, but whereas Medly regrew in response to the storm, cv. Kasbah did not, indicating that dormancy, although only partially expressed after spring sowing, was reinforced by summer drought. A longer drought in 2003 caused a 22% loss of the basal cover in cv. Medly, whereas Kasbah fully maintained its sward and therefore produced a higher post-drought autumn yield. This work confirms summer dormancy as a powerful trait for improving persistence over long, dry summers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the shortage of information on summer dormancy in tall fescue (Festuca arundinacea, syn. Lolium arundinaceum), we tested the response of 2 cultivars of differing dormancy expression and growth stage to a range of summer moisture conditions, including full irrigation, drought, and a simulated mid-summer storm and analysed whether traits associated with summer dormancy conferred better survival under severe field drought. Autumn-sown reproductive and younger, spring-sown plants of 2 cultivars, claimed to exhibit contrasting summer dormancy, were established and then tested in summer 2002 under either long drought, drought+ simulated mid-summer storm, or full irrigation. The autumn-sown reproductive plants of cv. Flecha exhibited traits that can be associated with partial summer dormancy since under summer irrigation they reduced aerial growth significantly and exhibited earlier herbage senescence. Moreover, cv. Flecha used 35% less soil water over the first summer. However, the water status of leaf bases of young vegetative tillers of both cultivars was similar under irrigation and also throughout most of the drought (leaf potential and water content maintained over -4MPa and at approx. 1 g H2O/g DM, respectively). The summer-active cv. Demeter did not stop leaf elongation even in drought and produced twice as much biomass as Flecha under irrigation. Cultivar Demeter responded to the simulated storm with a decline in dehydrin expression in leaf bases, whereas no decline occurred in Flecha, presumably because it remained partially dormant. The younger, spring-sown swards of both cultivars had similar biomass production under summer irrigation but whereas Demeter regrew in response to the simulated storm, cv. Flecha did not, indicating that dormancy, although only partially expressed, was reinforced by summer drought. In all trials, cv. Flecha out-yielded Demeter in autumn regrowth. In particular, the severe drought in 2003 caused a 25% loss of the basal cover in cv. Demeter, whereas Flecha fully maintained its sward allowing it to produce a higher post-drought autumn yield. This work links summer dormancy with higher persistence over long, dry summers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forage sorghum can be grown in areas presenting dry and hot environmental situations where the yield of other grasses can often be uneconomical. The objective of this study was to analyze the operating performance of agricultural machines in the deployment of sorghum forage in four tillage systems, as follows: no-tillage system, disk harrow + seeding, disk harrow + two light disking + seeding, minimum tillage + seeding and four seeding different speeds, as follows: 3, 5, 6 and 9 km h(-1). The study was performed under field conditions in FCA/UNESP, Botucatu County, SP, Brazil. The data were subjected to variance analysis in a simple factorial 4 x 4, and a random block design with split plots. Operational performance of the agricultural machinery, physical characteristics the soil, its water content and the yield of dry matter and green sorghum were determined. The operational performance of agricultural machines in the deployment of sorghum forage is influenced by the sowing speed and the soil tillage system used. Chisel plow was the equipment that required the highest mean traction force, mean traction and slip, as well as the lowest mean speed for the studied tillage system. Forage sorghum showed higher yields in no-tillage systems at a seeding speed of 5 km h(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dry seeding of aman rice can facilitate timely crop establishment and early harvest and thus help to alleviate the monga (hunger) period in the High Ganges Flood Plain of Bangladesh. Dry seeding also offers many other potential benefits, including reduced cost of crop establishment and improved soil structure for crops grown in rotation with rice. However, the optimum time for seeding in areas where farmers have access to water for supplementary irrigation has not been determined. We hypothesized that earlier sowing is safer, and that increasing seed rate mitigates the adverse effects of significant rain after sowing on establishment and crop performance. To test these hypotheses, we analyzed long term rainfall data, and conducted field experiments on the effects of sowing date (target dates of 25 May, 10 June, 25 June, and 10 July) and seed rate (20, 40, and 60 kg ha−1) on crop establishment, growth, and yield of dry seeded Binadhan-7 (short duration, 110–120 d) during the 2012 and 2013 rainy seasons. Wet soil as a result of untimely rainfall usually prevented sowing on the last two target dates in both years, but not on the first two dates. Rainfall analysis also suggested a high probability of being able to dry seed in late May/early June, and a low probability of being able to dry seed in late June/early July. Delaying sowing from 25 May/10 June to late June/early July usually resulted in 20–25% lower plant density and lower uniformity of the plant stand as a result of rain shortly after sowing. Delaying sowing also reduced crop duration, and tillering or biomass production when using a low seed rate. For the late June/early July sowings, there was a strong positive relationship between plant density and yield, but this was not the case for earlier sowings. Thus, increasing seed rate compensated for the adverse effect of untimely rains after sowing on plant density and the shorter growth duration of the late sown crops. The results indicate that in this region, the optimum date for sowing dry seeded rice is late May to early June with a seed rate of 40 kg ha−1. Planting can be delayed to late June/early July with no yield loss using a seed rate of 60 kg ha−1, but in many years, the soil is simply too wet to be able to dry seed at this time due to rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple-sown field trials in 4 consecutive years in the Riverina region of south-eastern Australia provided 24 different combinations of temperature and day length, which enabled the development of crop phenology models. A crop model was developed for 7 cultivars from diverse origins to identify if photoperiod sensitivity is involved in determining phenological development, and if that is advantageous in avoiding low-temperature damage. Cultivars that were mildly photoperiod-sensitive were identified from sowing to flowering and from panicle initiation to flowering. The crop models were run for 47 years of temperature data to quantify the risk of encountering low temperature during the critical young microspore stage for 5 different sowing dates. Cultivars that were mildly photoperiod-sensitive, such as Amaroo, had a reduced likelihood of encountering low temperature for a wider range of sowing dates compared with photoperiod-insensitive cultivars. The benefits of increased photoperiod sensitivity include greater sowing flexibility and reduced water use as growth duration is shortened when sowing is delayed. Determining the optimal sowing date also requires other considerations, e. g. the risk of cold damage at other sensitive stages such as flowering and the response of yield to a delay in flowering under non-limiting conditions. It was concluded that appropriate sowing time and the use of photoperiod-sensitive cultivars can be advantageous in the Riverina region in avoiding low temperature damage during reproductive development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports on a study investigating preferred driving speeds and frequency of speeding of 320 Queensland drivers. Despite growing community concern about speeding and extensive research linking it to road trauma, speeding remains a pervasive, and arguably, socially acceptable behaviour. This presents an apparent paradox regarding the mismatch between beliefs and behaviours, and highlights the necessity to better understand the factors contributing to speeding. Utilising self-reported behaviour and attitudinal measures, results of this study support the notion of a speed paradox. Two thirds of participants agreed that exceeding the limit is not worth the risks nor is it okay to exceed the posted limit. Despite this, more than half (58.4%) of the participants reported a preference to exceed the 100km/hour speed limit, with one third preferring to do so by 10 to 20 km/hour. Further, mean preferred driving speeds on both urban and open roads suggest a perceived enforcement tolerance of 10%, suggesting that posted limits have limited direct influence on speed choice. Factors that significantly predicted the frequency of speeding included: exposure to role models who speed; favourable attitudes to speeding; experiences of punishment avoidance; and the perceived certainty of punishment for speeding. These findings have important policy implications, particularly relating to the use of enforcement tolerances.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Young novice drivers continue to be overrepresented in fatalities and injuries arising from crashes even with the introduction of countermeasures such as graduated driver licensing (GDL). Enhancing countermeasures requires a better understanding of the variables influencing risky driving. One of the most common risky behaviours performed by drivers of all ages is speeding, which is particularly risky for young novice drivers who, due to their driving inexperience, have difficulty in identifying and responding appropriately to road hazards. Psychosocial theory can improve our understanding of contributors to speeding, thereby informing countermeasure development and evaluation. This paper reports an application of Akers’ social learning theory (SLT), augmented by Gerrard and Gibbons’ prototype/willingness model (PWM), in addition to personal characteristics of age, gender, car ownership, and psychological traits/states of anxiety, depression, sensation seeking propensity and reward sensitivity, to examine the influences on self-reported speeding of young novice drivers with a Provisional (intermediate) licence in Queensland, Australia. Method: Young drivers (n = 378) recruited in 2010 for longitudinal research completed two surveys containing the Behaviour of Young Novice Drivers Scale, and reported their attitudes and behaviours as pre-Licence/Learner (Survey 1) and Provisional (Survey 2) drivers and their sociodemographic characteristics. Results: An Akers’ measurement model was created. Hierarchical multiple regressions revealed that (1) personal characteristics (PC) explained 20.3%; (2) the combination of PC and SLT explained 41.1%; and (3) the combination of PC, SLT and PWM explained 53.7% of variance in self-reported speeding. Whilst there appeared to be considerable shared variance, the significant predictors in the final model included gender, car ownership, reward sensitivity, depression, personal attitudes, and Learner speeding. Conclusions: These results highlight the capacity for psychosocial theory to improve our understanding of speeding by young novice drivers, revealing relationships between previous behaviour, attitudes, psychosocial characteristics and speeding. The findings suggest multi-faceted countermeasures should target the risky behaviour of Learners, and Learner supervisors should be encouraged to monitor their Learners’ driving speed. Novice drivers should be discouraged from developing risky attitudes towards speeding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines the idea that plasticity in farm management introduces resilience to change and allows farm businesses to perform when operating in highly variable environments. We also argue for the need to develop and apply more integrative assessments of farm performance that combine the use of modelling tools with deliberative processes involving farmers and researchers in a co-learning process, to more effectively identify and implement more productive and resilient farm businesses. In a plastic farming system, farm management is highly contingent on environmental conditions. In plastic farming systems farm managers constantly vary crops and inputs based on the availability of limited and variable resources (e.g. land, water, finances, labour, machinery, etc.), and signals from its operating environment (e.g. climate, markets), with the objective of maximising a number of, often competing, objectives (e.g. maximise profits, minimise risks, etc.). In contrast in more rigid farming systems farm management is more calendar driven and relatively fixed sequences of crops are regularly followed over time and across the farm. Here we describe the application of a whole farm simulation model to (i) compare, in silico, the sensitivity of two farming systems designs of contrasting levels of plasticity, operating in two contrasting environments, when exposed to a stressor in the form of climate change scenarios;(ii) investigate the presence of interactions and feedbacks at the field and farm levels capable of modifying the intensity and direction of the responses to climate signals; and (iii) discuss the need for the development and application of more integrative assessments in the analysis of impacts and adaptation options to climate change. In both environments, the more plastic farm management strategy had higher median profits and was less risky for the baseline and less intensive climate change scenarios (2030). However, for the more severe climate change scenarios (2070), the benefit of plastic strategies tended to disappear. These results suggest that, to a point, farming systems having higher levels of plasticity would enable farmers to more effectively respond to climate shifts, thus ensuring the economic viability of the farm business. Though, as the intensity of the stress increases (e.g. 2070 climate change scenario) more significant changes in the farming system might be required to adapt. We also found that in the case studies analysed here, most of the impacts from the climate change scenarios on farm profit and economic risk originated from important reductions in cropping intensity and changes in crop mix rather than from changes in the yields of individual crops. Changes in cropping intensity and crop mix were explained by the combination of reductions in the number of sowing opportunities around critical times in the cropping calendar, and to operational constraints at the whole farm level i.e. limited work capacity in an environment having fewer and more concentrated sowing opportunities. This indicates that indirect impacts from shifts in climate on farm operations can be more important than direct impacts from climate on the yield of individual crops. The results suggest that due to the complexity of farm businesses, impact assessments and opportunities for adaptation to climate change might also need to be pursued at higher integration levels than the crop or the field. We conclude that plasticity can be a desirable characteristic in farming systems operating in highly variable environments, and that integrated whole farm systems analyses of impacts and adaptation to climate change are required to identify important interactions between farm management decision rules, availability of resources, and farmer's preference.