985 resultados para source-sink relationship


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Senescence represents the final developmental act of the leaf, during which the leaf cell is dismantled in a coordinated manner to remobilize nutrients and to secure reproductive success. The process of senescence provides the plant with phenotypic plasticity to help it adapt to adverse environmental conditions. Here, we provide a comprehensive overview of the factors and mechanisms that control the onset of senescence. We explain how the competence to senesce is established during leaf development, as depicted by the senescence window model. We also discuss the mechanisms by which phytohormones and environmental stresses control senescence, as well as the impact of source-sink relationships on plant yield and stress tolerance. In addition, we discuss the role of senescence as a strategy for stress adaptation and how crop production and food quality could benefit from engineering or breeding crops with altered onset of senescence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coffee (Coffea arabica L.) plants were grown in small (3-L), medium (10-L) and large (24-L) pots for 115 or 165 d after transplanting (DAT), which allowed different degrees of root restriction. Effects of altered source : sink ratio were evaluated in order to explore possible stomatal and non-stomatal mechanisms of photosynthetic down-regulation. Increasing root restriction brought about large and general reductions in plant growth associated with a rising root : shoot ratio. Treatments did not affect leaf water potential or leaf nutrient status, with the exception of N content, which dropped significantly with increasing root restriction even though an adequate N supply was available. Photosynthesis was severely reduced when plants were grown in small pots; this was largely associated with non-stomatal factors, such as decreased Rubisco activity. At 165DAT contents of hexose, sucrose, and amino acids decreased in plants grown in smaller pots, while those of starch and hexose-P increased in plants grown in smaller pots. Photosynthetic rates were negatively correlated with the ratio of hexose to free amino acids, but not with hexose content. Activities of acid invertase, sucrose synthase, sucrose-P synthase, fructose-1,6- bisphosphatase, ADP-glucose pyrophosphorylase, starch phosphorylase, glyceraldehyde-3-P dehydrogenase, PPi : fructose-6-P 1-phosphotransferase and NADP : glyceraldehyde-3-P dehydrogenase all decreased with severe root restriction. Glycerate-3-P : Pi and glucose-6-P : fructose-6-P ratios decreased accordingly. Photosynthetic down-regulation was unlikely to have been associated directly with an end-product limitation, but rather with decreases in Rubisco. Such a down-regulation was largely a result of N deficiency caused by growing coffee plants in small pots.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Muitos trabalhos mostram a importância da biomassa microbiana do solo (BMS), principalmente como fonte/dreno de C e de N em plantações florestais; contudo, são escassos os trabalhos relacionados ao fósforo microbiano (PBM), sobretudo aqueles relativos aos métodos de determinação do PBM nesses ecossistemas. O presente trabalho foi realizado com o objetivo de avaliar métodos de determinação do PBM em solo com diferentes coberturas vegetais. O trabalho consistiu da análise de amostras de Latossolo Vermelho-Amarelo distrófico muito argiloso (LVAd) localizado no município de Viçosa (MG), coletadas nas profundidades de 0 a 5 e 5 a 10 cm, em áreas com as seguintes coberturas vegetais: pínus (Pinus taeda), eucalipto (Eucalyptus grandis) e floresta nativa. Para determinação do P microbiano, foram empregados os métodos fumigação-extração (FE), irradiação com micro-ondas-extração (IE) e irradiação com micro-ondas-extração com membrana de troca aniônica (EMTA). em termos gerais, menores teores de PBM foram obtidos com o método irradiação-extração. Considerando a cobertura vegetal, foi detectada diferença significativa entre os três métodos sob floresta de eucalipto e floresta nativa, principalmente na camada superficial. Sob pínus, apenas o método IE diferiu dos demais, na camada subsuperficial. Menores coeficientes de variação (CV) foram obtidos com o FE, retratando maior precisão do método. Entretanto, o método IE mostrou-se, em termos operacionais, o mais adequado à determinação do PBM quando se tem maior número de amostras. Com relação às coberturas vegetais, a grande variabilidade observada nos CVs obtidos para cada cobertura, nos três métodos testados, inviabiliza a escolha de um único método que apresente maior precisão na avaliação do PBM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study was conducted to evaluate the damage caused by defoliation in maize. The experiment was carried out in 2005/2006 at Roma Farm, Ituverava-SP, using the triple hybrid CODETEC 304®. The experiment consisted of split plots (split-plot), which were distributed at random in three blocks, with the main treatment manual defoliation (30%, 40%, 60% and 80% defoliation) in the plots and as the secondary treatment the phenological phases (D1, D2 and D3) with three replicates for each treatment and a control plot (0% defoliation) for each block. It was evaluated the production of plots (g/m2), the average size of the spikes (cm) and the average weight of thousand grains (g). According to the results, it was concluded that the source-sink relations were negatively affected, and the treatment with 80% defoliation was the one that most affected all variables, thus, it is a level of defoliation that is responsible for the largest losses, with no means of compensation for the maize crop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cotton crop yield is directly associated with the efficient control of pests. This work evaluated the relationship of different densities of A. argillacea per plant at different cotton plant ages with seed germination of four cotton cultivars: IAC 25, Delta Opal, Fibermax 993, and Fibermax 966. A randomized block design was set up in 4x3 factorial with four replications. Densities of larvae per plant (0, 2, 4, and 6 larvae) was the major factor while plant ages (30, 60 and 90 days after emergency - DAE) the second level factor. Larvae were released on plants with 30, 60 and 90 DAE. The seeds were manually picked, for the evaluation of the germination in the laboratory using the seed viability through sand emergency method. The results showed that studied cotton cultivars differently to defoliate caused by A. argillacea larvae; the cotton development stage had more influence in the physiologic quality of the seeds than the defoliation; the germination is negatively affected when the defoliation took place at 60 DAE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L.yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source-sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use a recently developed computerized modeling technique to explore the long-term impacts of indigenous Amazonian hunting in the past, present, and future. The model redefines sustainability in spatial and temporal terms, a major advance over the static "sustainability indices" currently used to study hunting in tropical forests. We validate the model's projections against actual field data from two sites in contemporary Amazonia and use the model to assess various management scenarios for the future of Manu National Park in Peru. We then apply the model to two archaeological contexts, show how its results may resolve long-standing enigmas regarding native food taboos and primate biogeography, and reflect on the ancient history and future of indigenous people in the Amazon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that the best grape quality can occur only through the achievement of optimal source/sink ratio. Vine balance is in fact a key parameter in controlling berry sugar, acidity and secondary metabolites content (Howell, 2001; Vanden Heuvel et al., 2004). Despite yield reduction and quality improvement are not always strictly related, cluster thinning is considered a technique which could lead to improvement in grape sugar and anthocyanin composition (Dokoozlian and Hirschfelt, 1995; Guidoni et al., 2002). Among several microclimatic variables which may impact grape composition, the effect of cluster light exposure and temperature, which probably act in synergistic and complex way, has been widely explored showing positive even sometimes contradictory results (Spayd et al., 2001; Tarara et al., 2008). Pre-bloom and véraison defoliation are very efficient techniques in inducing cluster microclimatic modification. Furthermore pre-bloom defoliation inducing a lower berry set percentage On these basis the aim of the first experiment of the thesis was to verify in cv Sangiovese the effects on ripening and berry composition of management techniques which may increase source/sink ratio and /or promote light incidence on berries throughout grape ripening. An integrated agronomic, biochemical and microarray approach, aims to understand which mechanisms are involved in berry composition and may be conditioned in the berries during ripening in vines submitted to three treatments. In particular the treatments compared were: a) cluster thinning (increasing in source/sink ratio) b) leaf removal at véraison (increasing cluster light exposure) c) pre-bloom defoliation (increasing source sink ratio and cluster light exposure). Vine response to leaf removal at véraison was further evaluated in the second experiment on three different varieties (Cabernet Sauvignon, Nero d’Avola, Raboso Piave) chosen for their different genetic traits in terms of anthocyanin amount and composition. The integrated agronomic, biochemical and microarray approach, employed in order to understand those mechanisms involved in berry composition of Sangiovese vines submitted to management techniques which may increase source/sink ratio and induce microclimatic changes, bring to interesting results. This research confirmed the main role of source/sink ratio in conditioning sugars metabolism and revealed also that carbohydrates availability is a crucial issue in triggering anthocyanin biosynthesis. More complex is the situation of pre-bloom defoliation, where source/sink and cluster light increase effects are associated to determine final berry composition. It results that the application of pre-bloom defoliation may be risky, as too much dependent on seasonal conditions (rain and temperature) and physiological vine response (leaf area recovery, photosynthetic compensation, laterals regrowth). Early induced stress conditions could bring cluster at véraison in disadvantage to trigger optimal berry ripening processes compared to untreated vines. This conditions could be maintained until harvest, if no previously described physiological recovery occurs. Certainly, light exposure increase linked to defoliation treatments, showed a positive and solid effect on flavonol biosynthesis, as in our conditions temperature was not so different among treatments. Except the last aspects, that could be confirmed also for véraison defoliation, microclimatic changes by themselves seemed not able to induce any modification in berry composition. Further studies are necessary to understand if the peculiar anthocyanic and flavonols composition detected in véraison defoliation could play important role in both color intensity and stability of wines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Dissertation untersucht die biogeochemischen Vorgänge in der Vegetationsschicht (Bestand) und die Rückkopplungen zwischen physiologischen und physikalischen Umweltprozessen, die das Klima und die Chemie der unteren Atmosphäre beeinflussen. Ein besondere Schwerpunkt ist die Verwendung theoretischer Ansätze zur Quantifizierung des vertikalen Austauschs von Energie und Spurengasen (Vertikalfluss) unter besonderer Berücksichtigung der Wechselwirkungen der beteiligten Prozesse. Es wird ein differenziertes Mehrschicht-Modell der Vegetation hergeleitet, implementiert, für den amazonischen Regenwald parametrisiert und auf einen Standort in Rondonia (Südwest Amazonien) angewendet, welches die gekoppelten Gleichungen zur Energiebilanz der Oberfläche und CO2-Assimilation auf der Blattskala mit einer Lagrange-Beschreibung des Vertikaltransports auf der Bestandesskala kombiniert. Die hergeleiteten Parametrisierungen beinhalten die vertikale Dichteverteilung der Blattfläche, ein normalisiertes Profil der horizontalen Windgeschwindigkeit, die Lichtakklimatisierung der Photosynthesekapazität und den Austausch von CO2 und Wärme an der Bodenoberfläche. Desweiteren werden die Berechnungen zur Photosynthese, stomatären Leitfähigkeit und der Strahlungsabschwächung im Bestand mithilfe von Feldmessungen evaluiert. Das Teilmodell zum Vertikaltransport wird im Detail unter Verwendung von 222-Radon-Messungen evaluiert. Die ``Vorwärtslösung'' und der ``inverse Ansatz'' des Lagrangeschen Dispersionsmodells werden durch den Vergleich von beobachteten und vorhergesagten Konzentrationsprofilen bzw. Bodenflüssen bewertet. Ein neuer Ansatz wird hergeleitet, um die Unsicherheiten des inversen Ansatzes aus denjenigen des Eingabekonzentrationsprofils zu quantifizieren. Für nächtliche Bedingungen wird eine modifizierte Parametrisierung der Turbulenz vorgeschlagen, welche die freie Konvektion während der Nacht im unteren Bestand berücksichtigt und im Vergleich zu früheren Abschätzungen zu deutlich kürzeren Aufenthaltszeiten im Bestand führt. Die vorhergesagte Stratifizierung des Bestandes am Tage und in der Nacht steht im Einklang mit Beobachtungen in dichter Vegetation. Die Tagesgänge der vorhergesagten Flüsse und skalaren Profile von Temperatur, H2O, CO2, Isopren und O3 während der späten Regen- und Trockenzeit am Rondonia-Standort stimmen gut mit Beobachtungen überein. Die Ergebnisse weisen auf saisonale physiologische Änderungen hin, die sich durch höhere stomatäre Leitfähigkeiten bzw. niedrigere Photosyntheseraten während der Regen- und Trockenzeit manifestieren. Die beobachteten Depositionsgeschwindigkeiten für Ozon während der Regenzeit überschreiten diejenigen der Trockenzeit um 150-250%. Dies kann nicht durch realistische physiologische Änderungen erklärt werden, jedoch durch einen zusätzlichen cuticulären Aufnahmemechanismus, möglicherweise an feuchten Oberflächen. Der Vergleich von beobachteten und vorhergesagten Isoprenkonzentrationen im Bestand weist auf eine reduzierte Isoprenemissionskapazität schattenadaptierter Blätter und zusätzlich auf eine Isoprenaufnahme des Bodens hin, wodurch sich die globale Schätzung für den tropischen Regenwald um 30% reduzieren würde. In einer detaillierten Sensitivitätsstudie wird die VOC Emission von amazonischen Baumarten unter Verwendung eines neuronalen Ansatzes in Beziehung zu physiologischen und abiotischen Faktoren gesetzt. Die Güte einzelner Parameterkombinationen bezüglich der Vorhersage der VOC Emission wird mit den Vorhersagen eines Modells verglichen, das quasi als Standardemissionsalgorithmus für Isopren dient und Licht sowie Temperatur als Eingabeparameter verwendet. Der Standardalgorithmus und das neuronale Netz unter Verwendung von Licht und Temperatur als Eingabeparameter schneiden sehr gut bei einzelnen Datensätzen ab, scheitern jedoch bei der Vorhersage beobachteter VOC Emissionen, wenn Datensätze von verschiedenen Perioden (Regen/Trockenzeit), Blattentwicklungsstadien, oder gar unterschiedlichen Spezies zusammengeführt werden. Wenn dem Netzwerk Informationen über die Temperatur-Historie hinzugefügt werden, reduziert sich die nicht erklärte Varianz teilweise. Eine noch bessere Leistung wird jedoch mit physiologischen Parameterkombinationen erzielt. Dies verdeutlicht die starke Kopplung zwischen VOC Emission und Blattphysiologie.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leg 83 of the Deep Sea Drilling Project has deepened Hole 504B to over 1 km into basement, 1350 m below the seafloor (BSF). The hole previously extended through 274.5 m of sediment and 561.5 m of pillow basalts altered at low temperature (< 100°C), to 836 m BSF. Leg 83 drilling penetrated an additional 10 m of pillows, a 209-m transition zone, and 295 m into a sheeted dike complex. Leg 83 basalts (836-1350 m BSF) generally contain superimposed greenschist and zeolite-facies mineral parageneses. Alteration of pillows and dikes from 836 to 898 m BSF occurred under reducing conditions at low water/rock ratios, and at temperatures probably greater than 100°C. Evolution of fluid composition resulted in the formation of (1) clay minerals, followed by (2) zeolites, anhydrite, and calcite. Alteration of basalts in the transition zone and dike sections (898-1350 m BSF) occurred in three basic stages, defined by the opening of fractures and the formation of characteristic secondary minerals. (1) Chlorite, actinolite, pyrite, albite, sphene, and minor quartz formed in veins and host basalts from partially reacted seawater (Mg-bearing, locally metal-and Si-enriched) at temperatures of at least 200-250°C. (2) Quartz, epidote, and sulfides formed in veins at temperatures of up to 380°C, from more evolved (Mg-depleted, metal-, Si-, and 18O-enriched) fluids. (3) The last stage is characterized by zeolite formation: (a) analcite and stilbite formed locally, possibly at temperatures less than 200°C followed by (b) formation of laumontite, heulàndite, scolecite, calcite, and prehnite from solutions depleted in Mg and enriched in Ca and 18O, at temperatures of up to 250°C. The presence of small amounts of anhydrite locally may be due to ingress of relatively unaltered seawater into the system during Stage 3. Alteration was controlled by the permeability of the crust and is characterized by generally incomplete recrystallization and replacement reactions among secondary minerals. Secondary mineralogy in the host basalts is strongly controlled by primary mineralogy. The alteration of Leg 83 basalts can be interpreted in terms of an evolving hydrothermal system, with (a) changes in solution composition because of reaction of seawater fluids with basalts at high temperatures; (b) variations in permeability caused by several stages of sealing and reopening of cracks; and (c) a general cooling of the system, caused either by the cooling of a magma chamber beneath the spreading center and/or the movement of the crust away from the heat source. The relationship of the high-temperature alteration in the transition zone and dike sections to the low-temperature alteration in the overlying pillow section remains uncertain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

he global carbon cycle during the mid-Cretaceous (~125-88 million years ago, Ma) experienced numerous major perturbations linked to increased organic carbon burial under widespread, possibly basin-scale oxygen deficiency and episodes of euxinia (anoxic and H2S-containing). The largest of these episodes, the Cenomanian-Turonian boundary event (ca. 93.5 Ma), or oceanic anoxic event (OAE) 2, was marked by pervasive deposition of organic-rich, laminated black shales in deep waters and in some cases across continental shelves. This deposition is recorded in a pronounced positive carbon isotope excursion seen ubiquitously in carbonates and organic matter. Enrichments of redox-sensitive, often bioessential trace metals, including Fe and Mo, indicate major shifts in their biogeochemical cycles under reducing conditions that may be linked to changes in primary production. Iron enrichments and bulk Fe isotope compositions track the sources and sinks of Fe in the proto-North Atlantic at seven localities marked by diverse depositional conditions. Included are an ancestral mid-ocean ridge and euxinic, intermittently euxinic, and oxic settings across varying paleodepths throughout the basin. These data yield evidence for a reactive Fe shuttle that likely delivered Fe from the shallow shelf to the deep ocean basin, as well as (1) hydrothermal sources enhanced by accelerated seafloor spreading or emplacement of large igneous province(s) and (2) local-scale Fe remobilization within the sediment column. This study, the first to explore Fe cycling and enrichment patterns on an ocean scale using iron isotope data, demonstrates the complex processes operating on this scale that can mask simple source-sink relationships. The data imply that the proto-North Atlantic received elevated Fe inputs from several sources (e.g., hydrothermal, shuttle and detrital inputs) and that the redox state of the basin was not exclusively euxinic, suggesting previously unknown heterogeneity in depositional conditions and biogeochemical cycling within those settings during OAE-2.