976 resultados para smart control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a multiprotocol mobile application for building automation which supports and enables the integration of the most representative control technologies such as KNX, LonWorks and X-10. The application includes a real-time monitoring service. Finally, advanced control functionalities based on gestures recognition and predefined scenes have been implemented. This application has been developed and tested in the Energy Efficiency Research Facility located at CeDInt-UPM, where electrical loads, blinds and HVAC and lighting systems can be controlled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho apresenta-se o estudo do desenvolvimento de um controlador não-tradicional baseado em um mecanismo de histerese com auto-ajuste para o controle de nível de líquido de um sistema de separação e bombeio submarino conhecido como VASPS. O controlador desenvolvido gera sinais enviados para a bomba centrífuga submersa para controlar o nível de líquido no tanque do separador, evitando que ele atinja valores muito baixos que poderiam danificar a bomba ou valores muito altos que reduziriam a eficiência da separação líquido/gás. Os sinais de controle gerados pelo controlador visam solicitar a bomba o mínimo possível de modo a evitar o seu desgaste e falhas prematuras. Nas simulações, o controlador desenvolvido foi testado sob grandes variações nas condições de operação, tais como golfadas, produzindo resultados bastante satisfatórios e promissores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid technologies, thanks to the convergence of integrated microelectronic devices and new class of microfluidic structures could open new perspectives to the way how nanoscale events are discovered, monitored and controlled. The key point of this thesis is to evaluate the impact of such an approach into applications of ion-channel High Throughput Screening (HTS)platforms. This approach offers promising opportunities for the development of new classes of sensitive, reliable and cheap sensors. There are numerous advantages of embedding microelectronic readout structures strictly coupled to sensing elements. On the one hand the signal-to-noise-ratio is increased as a result of scaling. On the other, the readout miniaturization allows organization of sensors into arrays, increasing the capability of the platform in terms of number of acquired data, as required in the HTS approach, to improve sensing accuracy and reliabiity. However, accurate interface design is required to establish efficient communication between ionic-based and electronic-based signals. The work made in this thesis will show a first example of a complete parallel readout system with single ion channel resolution, using a compact and scalable hybrid architecture suitable to be interfaced to large array of sensors, ensuring simultaneous signal recording and smart control of the signal-to-noise ratio and bandwidth trade off. More specifically, an array of microfluidic polymer structures, hosting artificial lipid bilayers blocks where single ion channel pores are embededed, is coupled with an array of ultra-low noise current amplifiers for signal amplification and data processing. As demonstrating working example, the platform was used to acquire ultra small currents derived by single non-covalent molecular binding between alpha-hemolysin pores and beta-cyclodextrin molecules in artificial lipid membranes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Commercial swimming pools, particularly aquatic centres are increasingly common features of large towns and cities in Australia as people are encouraged to increase their levels of physical activity. Swimming is regarded as a low impact form of exercise and use of indoor facilities allows this to continue all-year round. Aquatic centres are large users of energy for water and space heating with an energy intensity which can be up to seven times that of a commercial office building in Australia. Much of the energy is used to heat water to relatively low temperatures and therefore solar energy technology is capable of providing this energy. In the residential sector, solar thermal systems for heating water and swimming pools is well-established. This is not the case for commercial swimming pools i.e. aquatic centres. In Victoria, a program to encourage commercial pool operators to install solar systems was funded in the early 1980s. This paper describes an investigation into the current use of and attitudes to solar systems in commercial pools through a survey of municipal pool operators in Victoria, south-eastern Australia. The survey found that there has been very little increase in the use of solar energy and that barriers to the use of the technology remain the same as they were nearly 30 years ago. Lack of roof area, poor payback periods and an inability of solar to meet pool heating needs are the most common misconceptions. To improve the uptake of solar heating in commercial pools, further research, particularly looking at the feasibility of integrating traditional heat sources with solar collectors using smart control, is required. An incentive programme and the education of the new generation of consultants and aquatic centre operators, unfamiliar with the potential benefits of solar systems, would also help to increase their uptake.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Often voltage rise along low voltage (LV) networks limits their capacity to accommodate more renewable energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers' resources and control voltage rise in LV networks, where photovoltaics (PVs) are considered as the RE sources. The proposed coordination algorithm includes both localized and distributed control strategies. The localized strategy determines the value of PV inverter active and reactive power, while the distributed strategy coordinates customers' energy storage units (ESUs). To verify the effectiveness of proposed approach, a typical residential LV network is used and simulated in the PSCAD-EMTC platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project was an innovative approach in developing smart coordination of available energy resources to improve the integration level of PV in distribution network. Voltage and loading issues are considered as the main concerns for future electricity grid which need to be avoided using such resources. A distributed control structure was proposed for the resources in distribution network to avoid noted power quality issues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigates the use of building information models for access control and security applications in critical infrastructures and complex building environments. It examines current problems in security management for physical and logical access control and proposes novel solutions that exploit the detailed information available in building information models. The project was carried out as part of the Airports of the Future Project and the research was modelled based on real-world problems identified in collaboration with our industry partners in the project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis addresses voltage violation problem, the most critical issue associated with high level penetration of photovoltaic (PV) in electricity distribution network. A coordinated control algorithm using the reactive power from PV inverter and integrated battery energy storage has been developed and investigated in different network scenarios in the thesis. Probable variations associated with solar generation, end-user participation and network parameters are also considered. Furthermore, a unified data model and well-defined communication protocol to ensure the smooth coordination between all the components during the operation of the algorithm is described. Finally this thesis incorporated the uncertainties of solar generation using probabilistic load flow analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polynomial Chaos Expansion with Latin Hypercube sampling is used to study the effect of material uncertainty on vibration control of a smart composite plate with piezoelectric sensors/actuators. Composite material properties and piezoelectric coefficients are considered as independent and normally distributed random variables. Numerical results show substantial variation in structural dynamic response due to material uncertainty of active vibration control system. This change in response due to material uncertainty can be compensated by actively tuning the feedback control system. Numerical results also show variation in dispersion of dynamic characteristics and control parameters with respect to ply angle and stacking sequence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a networked control systems (NCS) framework for wide area monitoring control of smart power grids. We consider a scenario in which wide area measurements are transmitted to controllers at remote locations. We model the effects of delays and packet dropouts due to limited communication capabilities in the grid. We also design a robust networked controller to damp wide-area oscillations based on information obtained from Wide Area Monitoring Systems (WAMS), and analyze the improvement in system stability due to networked control. With communication integration being an important feature of the smart grid, detailed consideration of the effects of communication is essential in the control design for future power systems. We believe that this work is an essential step in this direction.