941 resultados para septic shock


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Vasopressin has been shown to increase blood pressure in catecholamine-resistant septic shock. The aim of this study was to measure the effects of low-dose vasopressin on regional (hepato-splanchnic and renal) and microcirculatory (liver, pancreas, and kidney) blood flow in septic shock. METHODS: Thirty-two pigs were anesthetized, mechanically ventilated, and randomly assigned to one of four groups (n = 8 in each). Group S (sepsis) and group SV (sepsis/vasopressin) were exposed to fecal peritonitis. Group C and group V were non-septic controls. After 240 minutes, both septic groups were resuscitated with intravenous fluids. After 300 minutes, groups V and SV received intravenous vasopressin 0.06 IU/kg per hour. Regional blood flow was measured in the hepatic and renal arteries, the portal vein, and the celiac trunk by means of ultrasonic transit time flowmetry. Microcirculatory blood flow was measured in the liver, kidney, and pancreas by means of laser Doppler flowmetry. RESULTS: In septic shock, vasopressin markedly decreased blood flow in the portal vein, by 58% after 1 hour and by 45% after 3 hours (p < 0.01), whereas flow remained virtually unchanged in the hepatic artery and increased in the celiac trunk. Microcirculatory blood flow decreased in the pancreas by 45% (p < 0.01) and in the kidney by 16% (p < 0.01) but remained unchanged in the liver. CONCLUSION: Vasopressin caused marked redistribution of splanchnic regional and microcirculatory blood flow, including a significant decrease in portal, pancreatic, and renal blood flows, whereas hepatic artery flow remained virtually unchanged. This study also showed that increased urine output does not necessarily reflect increased renal blood flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Vasopressin increases arterial pressure in septic shock even when alpha-adrenergic agonists fail. The authors studied the effects of vasopressin on microcirculatory blood flow in the entire gastrointestinal tract in anesthetized pigs during early septic shock. METHODS: Thirty-two pigs were intravenously anesthetized, mechanically ventilated, and randomly assigned to one of four groups (n=8 in each; full factorial design). Group S (sepsis) and group SV (sepsis-vasopressin) were made septic by fecal peritonitis. Group C and group V were nonseptic control groups. After 300 min, group V and group SV received intravenous infusion of 0.06 U.kg.h vasopressin. In all groups, cardiac index and superior mesenteric artery flow were measured. Microcirculatory blood flow was recorded with laser Doppler flowmetry in both mucosa and muscularis of the stomach, jejunum, and colon. RESULTS: While vasopressin significantly increased arterial pressure in group SV (P<0.05), superior mesenteric artery flow decreased by 51+/-16% (P<0.05). Systemic and mesenteric oxygen delivery and consumption decreased and oxygen extraction increased in the SV group. Effects on the microcirculation were very heterogeneous; flow decreased in the stomach mucosa (by 23+/-10%; P<0.05), in the stomach muscularis (by 48+/-16%; P<0.05), and in the jejunal mucosa (by 27+/-9%; P<0.05), whereas no significant changes were seen in the colon. CONCLUSION: Vasopressin decreased regional flow in the superior mesenteric artery and microcirculatory blood flow in the upper gastrointestinal tract. This reduction in flow and a concomitant increase in the jejunal mucosa-to-arterial carbon dioxide gap suggest compromised mucosal blood flow in the upper gastrointestinal tract in septic pigs receiving low-dose vasopressin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical studies evaluating the use of phenylephrine in septic shock are lacking. The present study was designed as a prospective, crossover pilot study to compare the effects of norepinephrine (NE) and phenylephrine on systemic and regional hemodynamics in patients with catecholamine-dependent septic shock. In 15 septic shock patients, NE (0.82 +/- 0.69 mug.kg.min) was replaced with phenylephrine (4.39 +/- 5.23 mug.kg.min) titrated to maintain MAP between 65 and 75 mmHg. After 8 h of phenylephrine infusion treatment was switched back to NE. Data from right heart catheterization, acid-base balance, thermo-dye dilution catheter, gastric tonometry, and renal function were obtained before, during, and after replacing NE with phenylephrine. Variables of systemic hemodynamics, global oxygen transport, and acid-base balance remained unchanged after replacing NE with phenylephrine except for a significant decrease in heart rate (phenylephrine, 89 +/- 18 vs. NE, 93 +/- 18 bpm; P < 0.05). However, plasma disappearance rate (phenylephrine, 13.5 +/- 7.1 vs. NE, 16.4 +/- 8.7%.min) and clearance of indocyanine green (phenylephrine, 330 +/- 197 vs. NE, 380 +/- 227mL.min.m), as well as creatinine clearance (phenylephrine, 81.3 +/- 78.4 vs. NE, 94.3 +/- 93.5 mL.min) were significantly decreased by phenylephrine infusion (each P < 0.05). In addition, phenylephrine increased arterial lactate concentrations as compared with NE infusion (1.7 +/- 1.0 vs. 1.4 +/- 1.1 mM; P < 0.05). After switching back to NE, all variables returned to values obtained before phenylephrine infusion except creatinine clearance and gastric tonometry values. Our results suggest that for the same MAP, phenylephrine causes a more pronounced hepatosplanchnic vasoconstriction as compared with NE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sialic-acid-binding immunoglobulin-like lectin (Siglec) 9 mediates death signals in neutrophils. The objective of this study was to determine the heterogeneity of neutrophil death responses in septic shock patients and to analyze whether these ex vivo data are related to the severity and outcome of septic shock. In this prospective cohort study, blood samples of patients with septic shock (n = 26) in a medical-surgical intensive care unit (ICU) were taken within 24 h of starting the treatment of septic shock (phase A), after circulatory stabilization (phase B), and 10 days after admission or at ICU discharge if earlier (phase C). Neutrophil death was quantified in the presence and absence of an agonistic anti-Siglec-9 antibody after 24 h ex vivo. In phase A, two distinct patterns of Siglec-9-mediated neutrophil death were observed: resistance to neutrophil death (n = 14; Siglec-9 nonresponders) and increased neutrophil death (n = 12; Siglec-9 responders) after Siglec-9 ligation compared with neutrophils from normal donors. Experiments using a pharmacological pan-caspase-inhibitor provided evidence for caspase-independent neutrophil death in Siglec-9 responders upon Siglec-9 ligation. There were no differences between Siglec-9 responders and nonresponders in length of ICU or hospital stay of survivors or severity of organ dysfunction. Taken together, septic shock patients exhibit different ex vivo death responses of blood neutrophils after Siglec-9 ligation early in shock. Both the resistance and the increased susceptibility to Siglec-9-mediated neutrophil death tend to normalize within 72 h after shock. Further studies are required to understand the role of Siglec-9-mediated neutrophil death in septic shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: It is unclear to which level mean arterial blood pressure (MAP) should be increased during septic shock in order to improve outcome. In this study we investigated the association between MAP values of 70 mmHg or higher, vasopressor load, 28-day mortality and disease-related events in septic shock. METHODS: This is a post hoc analysis of data of the control group of a multicenter trial and includes 290 septic shock patients in whom a mean MAP > or = 70 mmHg could be maintained during shock. Demographic and clinical data, MAP, vasopressor requirements during the shock period, disease-related events and 28-day mortality were documented. Logistic regression models adjusted for the geographic region of the study center, age, presence of chronic arterial hypertension, simplified acute physiology score (SAPS) II and the mean vasopressor load during the shock period was calculated to investigate the association between MAP or MAP quartiles > or = 70 mmHg and mortality or the frequency and occurrence of disease-related events. RESULTS: There was no association between MAP or MAP quartiles and mortality or the occurrence of disease-related events. These associations were not influenced by age or pre-existent arterial hypertension (all P > 0.05). The mean vasopressor load was associated with mortality (relative risk (RR), 1.83; confidence interval (CI) 95%, 1.4-2.38; P < 0.001), the number of disease-related events (P < 0.001) and the occurrence of acute circulatory failure (RR, 1.64; CI 95%, 1.28-2.11; P < 0.001), metabolic acidosis (RR, 1.79; CI 95%, 1.38-2.32; P < 0.001), renal failure (RR, 1.49; CI 95%, 1.17-1.89; P = 0.001) and thrombocytopenia (RR, 1.33; CI 95%, 1.06-1.68; P = 0.01). CONCLUSIONS: MAP levels of 70 mmHg or higher do not appear to be associated with improved survival in septic shock. Elevating MAP >70 mmHg by augmenting vasopressor dosages may increase mortality. Future trials are needed to identify the lowest acceptable MAP level to ensure tissue perfusion and avoid unnecessary high catecholamine infusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to achieve adequate tissue oxygen delivery early in patients with septic shock is well established. However, it is less well recognized that tissue hypoperfusion can exist despite normalization of systemic hemodynamics. Efforts to resuscitate septic patients until adequate tissue perfusion has been achieved can potentially improve outcome. In a multicenter study, 130 patients with septic shock were resuscitated within 12 hours of diagnosis using a protocol including goals for mean arterial and pulmonary artery occluded pressures, urinary output, arterial pH, and hemoglobin goals. They were then randomly assigned to further resuscitation with either a cardiac index (>or= 3 l/minute per m2) or a gastric mucosal pH (>or= 7.32) target. The intensive care unit length of stay and 28-day mortality did not differ between groups, but more patients in the cardiac index group were in the target range, both at baseline and after resuscitation, as compared with the gastric mucosal pH group. In contrast to cardiac index, gastric mucosal pH at baseline and at 24 and 48 hours predicted mortality. Whether other targets for the chosen variables, or different and--in particular--earlier resuscitation efforts would have favored one group cannot be concluded from the data provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Ventricular torsion is an important component of cardiac function. The effect of septic shock on left ventricular torsion is not known. Because torsion is influenced by changes in preload, we compared the effect of fluid loading on left ventricular torsion in septic shock with the response in matched healthy control subjects. METHODS We assessed left ventricular torsion parameters using transthoracic echocardiography in 11 patients during early septic shock and in 11 age- and sex-matched healthy volunteers before and after rapid volume loading with 250 mL of a Ringer's lactate solution. RESULTS Peak torsion and peak apical rotation were reduced in septic shock (10.2 ± 5.2° and 5.6 ± 5.4°) compared with healthy volunteers (16.3 ± 4.5° and 9.6 ± 1.5°; P = 0.009 and P = 0.006 respectively). Basal rotation was delayed and diastolic untwisting velocity reached its maximum later during diastole in septic shock patients than in healthy volunteers (104 ± 16% vs 111 ± 14% and 13 ± 5% vs 21 ± 10%; P = 0.03 and P = 0.034, respectively). Fluid challenge increased peak torsion in both groups (septic shock, 10.2 ± 5.3° vs 12.6 ± 3.9°; healthy volunteers, 16.3 ± 4.5° vs 18.1 ± 6°; P = 0.01). Fluid challenge increased left ventricular stroke volume in septic shock patients (P = 0.003). CONCLUSIONS Compared with healthy volunteers, left ventricular torsion is impaired in septic shock patients. Fluid loading attenuates torsion abnormalities in parallel with increasing stroke volume. Reduced torsional motion might constitute a relevant component of septic cardiomyopathy, a notion that merits further testing in larger populations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xu and colleagues evaluated the impact of increasing mean arterial blood pressure levels through norepinephrine administration on systemic hemodynamics, tissue perfusion, and sublingual microcirculation of septic shock patients with chronic hypertension. The authors concluded that, although increasing arterial blood pressure improved sublingual microcirculation parameters, no concomitant improvement in systemic tissue perfusion indicators was found. Here, we discuss why resuscitation targets may need to be individualized, taking into account the patient's baseline condition, and present directions for future research in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2015 and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/annualupdate2015. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complement system functions as a major effector for both the innate and adaptive immune response. Activation of the complement cascade by either the classical, alternative, or lectin pathway promotes the proteolysis of C3 and C5 thereby generating C3a and C5a. Referred to as anaphylatoxins, the C3a and C5a peptides mediate biological effects upon binding to their respective receptors; C3a binds to the C3a receptor (C3aR) while C5a binds to the C5a receptor (C5aR, CD88). Both C3a and C5a are known for their broad proinflammatory effects. Elevated levels of both peptides have been isolated from patients with a variety of inflammatory diseases such as COPD, asthma, RA, SLE, and sepsis. Recent studies suggest that C5a is a critical component in the acquired neutrophil dysfunction, coagulopathy, and progressive multi-organ dysfunction characteristic of sepsis. The primary hypothesis of this dissertation was that preventing C3a-C3aR and C5a-C5aR mediated pro-inflammatory effects would improve survival in endotoxic, bacteremic and septic shock. To test this hypothesis, the murine C3aR and C5aR genes were disrupted. Following disruption of both the C3aR and C5aR genes, no abnormalities were identified other than the absence of their respective mRNA and protein. In models of both endotoxic and bacteremic shock, C3aR deficient mice suffered increased mortality when compared to their wild type littermates. C3aR deficient mice also had elevated circulating IL-1β levels. Using a model of sepsis, C3aR deficient mice had a higher circulating concentration of IL-6 and decreased peritoneal inflammatory infiltration. While these results were unexpected, they support an emerging role for C3a in immunomodulation. In contrast, following endotoxic or bacteremic shock, C5aR deficient mice experienced increased survival, less hemoconcentration and less thrombocytopenia. It was later determined that C5a mediated histamine release significantly contributes to host morbidity and mortality in bacteremic shock. These studies provide evidence that C5a functions primarily as a proinflammatory molecule in models of endotoxic and bacteremic shock. In the same models, C3a-C3aR interactions suppress the inflammatory response and protect the host. Collectively, these results present in vivo evidence that C3a and C5a have divergent biological functions. ^