27 resultados para rimonabant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orlistat and sibutramine only cause modest reductions in body weight. Rimonabant, a cannabinoid receptor 1 antagonist, is a new approach to weight reduction, but is it safe, efficacious, and better than the existing agents?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on numerous pharmacological studies that have revealed an interaction between cannabinoid and opioid systems at the molecular, neurochemical, and behavioral levels, a new series of hybrid molecules has been prepared by coupling the molecular features of two well-known drugs, ie, rimonabant and fentanyl. The new compounds have been tested for their affinity and functionality regarding CB1 and CB2 cannabinoid and mu opioid receptors. In [S-35]-GTP.S (guanosine 5'-O-[gamma-thio] triphosphate) binding assays from the post-mortem human frontal cortex, they proved to be CB1 cannabinoid antagonists and mu opioid antagonists. Interestingly, in vivo, the new compounds exhibited a significant dual antagonist action on the endocannabinoid and opioid systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced subjective experience of reward (anhedonia) is a key symptom of major depression. The anti-obesity drug and cannabinoid type 1 receptor (CB(1)) antagonist, rimonabant, is associated with significant rates of depression and anxiety in clinical use and was recently withdrawn from the market because of these adverse effects. Using a functional magnetic resonance imaging (fMRI) model of reward we hypothesized that rimonabant would impair reward processing. Twenty-two healthy participants were randomly allocated to receive rimonabant (20 mg), or placebo, for 7 d in a double-blind, parallel group design. We used fMRI to measure the neural response to rewarding (sight and/or flavour of chocolate) and aversive (sight of mouldy strawberries and/or an unpleasant strawberry taste) stimuli on the final day of drug treatment. Rimonabant reduced the neural response to chocolate stimuli in key reward areas such as the ventral striatum and the orbitofrontal cortex. Rimonabant also decreased neural responses to the aversive stimulus condition in the caudate nucleus and ventral striatum, but increased lateral orbitofrontal activations to the aversive sight and taste of strawberry condition. Our findings are the first to show that the anti-obesity drug rimonabant inhibits the neural processing of rewarding food stimuli in humans. This plausibly underlies its ability to promote weight loss, but may also indicate a mechanism for inducing anhedonia which could lead to the increased risk of depressive symptomatology seen in clinical use. fMRI may be a useful method of screening novel agents for unwanted effects on reward and associated clinical adverse reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB(1) antagonists / inverse agonists. Concentrations of 0.5-10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABA(A) receptors but found a significant positive allosteric modulation instead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity and alcoholism are two common modern-day diseases. The cannabinoid CB, receptor antagonist rimonabant is in Phase III clinical trial for the treatment of obesity with preliminary results showing that it decreases appetite and body weight. Animal studies have shown that rimonabant is effective in the treatment of alcoholism. SR-147778 is a new potent and selective CB1 receptor antagonist. In animals, SR-147778 has been shown to inhibit CB1 receptor-mediated hypothermia, analgesia and slowing of gastrointestinal transit. In rats trained to drink sucrose, the oral administration of SR-147778 3 mg/kg, before the presentation of sucrose, decreased the consumption of sucrose. SR-147778 3 mg/kg also reduced spontaneous feeding in rats deprived of food and also in non-deprived rats. In Sardinian alcohol-preferring (sP) rats, in the alcohol-naive state, SR-147778 slowed the development of a preference for alcohol. in alcohol-experienced sP rats SR-147778 (2.5, 5 and 10 mg/kg p.o.) reduced the alcohol intake. When alcohol-experienced sP rats are deprived of alcohol for 15 days, there is a large intake of alcohol on reintroduction of alcohol, and this response was almost abolished by treatment with SR-147778. From the preclinical studies published to date, there is no obvious major point of difference between rimonabant and SR-147778, and both are promising agents for the treatment of obesity and alcoholism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The incidence of obesity is increasing; this is of major concern, as obesity is associated with cardiovascular disease, stroke, type 2 diabetes, respiratory tract disease, and cancer. Objectives/methods: This evaluation is of a Phase II clinical trial with tesofensine in obese subjects. Results: After 26 weeks, tesofensine caused a significant weight loss, and may have a higher maximal ability to reduce weight than the presently available anti-obesity agents. However, tesofensine also increased blood pressure and heart rate, and may increase psychiatric disorders. Conclusions: It is encouraging that tesofensine 0.5 mg may cause almost double the weight loss observed with sibutramine or rimonabant. As tesofensine and sibutramine have similar pharmacological profiles, it would be of interest to compare the weight loss with tesofensine in a head-to-head clinical trial with sibutramine, to properly assess their comparative potency. Also, as teso fensine 0.5 mg increases heart rate, as well as increasing the incidence of adverse effects such as nausea, drug mouth, flatulence, insomnia, and depressed mode, its tolerability needs to be further evaluated in large Phase III clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compoundsthe bisulfate salt of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (−)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 30showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB1 receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant) 1 and 4S-(−)-3-(4-chlorophenyl)-N-methyl-N‘-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Como as doenças cardiovasculares (DCV) constituem a principal causa de morte na maioria dos países e as tendências de mortalidade não se apresentam totalmente elucidadas nos países em desenvolvimento, torna-se adequado explorar a evolução da mortalidade das DCV, dando ênfase ao acidente vascular cerebral (AVC) no Brasil. Devido à prevalência de AVC e também devido à associação causal entre sobrepeso ou obesidade e AVC não ser clara, é importante avaliar o efeito da perda de peso na prevenção primária de AVC. Baseado no fato do rimonabant ser a primeira droga de uma nova classe de medicamentos promissora não apenas na redução de peso, mas por sua influência sobre os fatores de risco cardiovascular, torna-se pertinente estabelecer sua eficácia e segurança. Inicialmente, para traçar um panorama sobre a epidemiologia das DCV no Brasil, com ênfase em AVC, foram realizados dois estudos com as tendências temporais de mortalidade por DCV ao longo das três últimas décadas, investigando as diferenças entre as regiões do país e entre indivíduos de diversas faixas etárias e de ambos os sexos, (artigo I e II). Além disso, duas revisões sistemáticas foram realizadas: uma para avaliar o efeito da perda de peso na prevenção primária de AVC; a segunda para investigar o uso do medicamento rimonabant no tratamento da obesidade (artigo III e IV). As taxas de mortalidade de AVC diminuíram substancialmente nas últimas três décadas, de 68,2 a 40,9 por 100 000 habitantes. Essa redução foi detectada em ambos os sexos de todas as faixas etárias, e nas diferentes regiões do país, sendo mais acentuadas nas regiões mais ricas (artigo I). A mesma tendência foi observada nas demais DCV, que em geral apresentaram uma redução anual média de 3,9%. As maiores reduções foram encontradas para AVC (média de 4,0% ao ano) seguido por doença coronariana (média de 3,6% ao ano) (artigo II). Não existem estudos avaliando o efeito da redução de peso na prevenção primária de AVC (artigo III). Houve um efeito doseresposta com o uso do rimonabant: comparado com placebo, 20 mg da droga produziu uma redução de peso maior (4,9 kg) em 4 ensaios clínicos com duração de 1 ano. Foram observadas melhoras nos marcadores de risco cardiovascular. Porém 5 mg comparado com placebo mostrou apenas uma redução de 1,3 kg a mais do peso. A maior dose também provocou maiores efeitos adversos. Perdas no seguimento foram de aproximadamente 40% (artigo IV). Durante as últimas décadas, a mortalidade por DCV em geral e AVC diminiu consistentemente no Brasil, porém a magnitude do declínio variou de acordo com as diferenças socioeconômicas. Amplas intervenções poderiam ter mais êxito se planejadas de acordo com as desigualdades sociais e diferenças culturais. Os achados apontam para a necessidade da realização de ensaios clínicos randomizados controlados avaliando a perda de peso na prevenção primária do AVC, devido à alta relevância dessa condição. Como intervenções não são totamente eficazes no tratamento da obesidade, a prevenção, englobando um conjunto articulado de ações, permanece a forma mais eficiente de controlá-la. O medicamento rimonabant apresentou modesta perda de peso, porém os resultados obtidos devem ser interpretados com cautela de acordo com as deficiências na qualidade metodológica apresentadas por todos os estudos. São necessárias pesquisas de alta qualidade para avaliar a eficácia e a segurança do rimonabant em períodos mais longos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabinoid receptors are members of the large family of G-protein coupled receptors. Two types of cannabinoid receptor have been discovered: CB1 and CB2. CB1 receptors are localised predominantly in the brain whereas CB2 receptors are more abundant in peripheral nervous system cells. CB1 receptors have been related with a number of disorders, including depression, anxiety, stress, schizophrenia, chronic pain and obesity. For this reason, several cannabinoid ligands were developed as drug candidates. Among these ligands, a prominent position is occupied by SR141716 (Rimonabant), which is a pyrazole derivative with inverse agonist activity discovered by Sanofi-Synthelabo in 1994. This compound was marketed in Europe as an anti-obesity drug, but subsequently withdrawn due to its side-effects. Since the relationship between the CB1 receptors’ functional modification, density and distribution, and the beginning of a pathological state is still not well understood, the development of radio-ligands suitable for in vivo PET (Positron Emission Tomography) functional imaging of CB1 receptors remains an important area of research in medicine and drug development. To date, a few radiotracers have been synthesised and tested in vivo, but most of them afforded unsatisfactory brain imaging results. A handful of radiolabelled CB1 PET ligands have also been submitted to clinical trials in humans. In this PhD Thesis the design, synthesis and characterization of three new classes of potential high-affinity CB1 ligands as candidate PET tracers is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purposeThe phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS.Experimental approachEffects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro.Key resultsThe cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB(1) receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide.Conclusions and implicationsWe show for the first time that Delta(9)-THCV acts as a functional CB(1) receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB(1) receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV- and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.British Journal of Pharmacology advance online publication, 3 March 2008; doi:10.1038/bjp.2008.57.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS. Experimental approach: Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro. Key results: The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB1 receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide. Conclusions and implications: We show for the first time that Delta(9)-THCV acts as a functional CB1 receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB1 receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV-and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) was only 'discovered' in the 1990s. Since then, many new ligands have been identified, as well as many new intracellular targets--ranging from the PPARs, to mitochondria, to lipid rafts. It was thought that blocking the CB-1 receptor might reverse obesity and the metabolic syndrome. This was based on the idea that the ECS was dysfunctional in these conditions. This has met with limited success. The reason may be that the ECS is a homeostatic system, which integrates energy seeking and storage behaviour with resistance to oxidative stress. It could be viewed as having thrifty actions. Thriftiness is an innate property of life, which is programmed to a set point by both environment and genetics, resulting in an epigenotype perfectly adapted to its environment. This thrifty set point can be modulated by hormetic stimuli, such as exercise, cold and plant micronutrients. We have proposed that the physiological and protective insulin resistance that underlies thriftiness encapsulates something called 'redox thriftiness', whereby insulin resistance is determined by the ability to resist oxidative stress. Modern man has removed most hormetic stimuli and replaced them with a calorific sedentary lifestyle, leading to increased risk of metabolic inflexibility. We suggest that there is a tipping point where lipotoxicity in adipose and hepatic cells induces mild inflammation, which switches thrifty insulin resistance to inflammation-driven insulin resistance. To understand this, we propose that the metabolic syndrome could be seen from the viewpoint of the ECS, the mitochondrion and the FOXO group of transcription factors. FOXO has many thrifty actions, including increasing insulin resistance and appetite, suppressing oxidative stress and shifting the organism towards using fatty acids. In concert with factors such as PGC-1, they also modify mitochondrial function and biogenesis. Hence, the ECS and FOXO may interact at many points; one of which may be via intracellular redox signalling. As cannabinoids have been shown to modulate reactive oxygen species production, it is possible that they can upregulate anti-oxidant defences. This suggests they may have an 'endohormetic' signalling function. The tipping point into the metabolic syndrome may be the result of a chronic lack of hormetic stimuli (in particular, physical activity), and thus, stimulus for PGC-1, with a resultant reduction in mitochondrial function and a reduced lipid capacitance. This, in the context of a positive calorie environment, will result in increased visceral adipose tissue volume, abnormal ectopic fat content and systemic inflammation. This would worsen the inflammatory-driven pathological insulin resistance and inability to deal with lipids. The resultant oxidative stress may therefore drive a compensatory anti-oxidative response epitomised by the ECS and FOXO. Thus, although blocking the ECS (e.g. via rimonabant) may induce temporary weight loss, it may compromise long-term stress resistance. Clues about how to modulate the system more safely are emerging from observations that some polyphenols, such as resveratrol and possibly, some phytocannabinoids, can modulate mitochondrial function and might improve resistance to a modern lifestyle.