990 resultados para ribosomal gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present data supporting cytogenetic observations on nucleolar dominance in hybrids between Drosophila arizonae and D. mulleri. Our approach was to compare the rDNA restriction patterns between the parental species and their hybrids. Results demonstrated that the minichromosome attached to the nucleolus in hybrid males is derived from D. arizonae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the chromosomal location of 5S rDNA clusters in 29 species of grasshoppers belonging to the family Acrididae. There was extensive variation among species for the number and location of 5S rDNA sites. Out of 148 sites detected, 75% were proximally located, 21.6% were interstitial, and only 3.4% were distal. The number of 5S rDNA sites per species varied from a single chromosome pair (in six species) to all chromosome pairs (in five species), with a range of intermediate situations. Thirteen chromosomes from eight species carried two 5S rDNA clusters. At intraspecific level, differences among populations were detected in Eyprepocnemis plorans, and some heteromorphisms have also been observed in some species. Double FISH for 5S rDNA and H3 histone gene DNA, performed on 17 of these 29 species, revealed that both markers are sometimes placed in a same chromosome but at different location, whereas they appeared to co-localize in five species (Calliptamus barbarus, Heteracris adpersa, Aiolopus strepens, Oedipoda charpentieri and O. coerulescens). Double fiber-FISH in A. strepens and O. coerulescens showed that the two DNAs are closely interspersed with variable relative amounts of both classes of DNA. Finally, no correlation was observed between the number of 5S and 45S rDNA clusters in 23 species where this information was available. These results are discussed in the light of possible mechanisms of spread that led to the extensive variation in the number of clusters observed for both rDNA types in acridid grasshoppers. © 2011 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A physical chromosome mapping of the H1 histone and 5S and 18S ribosomal RNA (rRNA) genes was performed in interspecific hybrids of Pseudoplatystoma corruscans and P. reticulatum. The results showed that 5S rRNA clusters were located in the terminal region of 2 chromosomes. H1 histone and 18S ribosomal genes were co-localized in the terminal portion of 2 chromosomes (distinct from the chromosomes bearing 5S clusters). These results represent the first report of association between H1 histone and 18S genes in fish genomes. The chromosome clustering of ribosomal and histone genes was already reported for different organisms and suggests a possible selective pressure for the maintenance of this association. © 2012 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs) located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA), allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Although the molecular pathogenesis of pituitary adenomas has been assessed by several different techniques, it still remains partially unclear. Ribosomal proteins (RPs) have been recently related to human tumorigenesis, but they have not yet been evaluated in pituitary tumorigenesis. Objective: The aim of this study was to introduce serial analysis of gene expression (SAGE), a high-throughput method, in pituitary research in order to compare differential gene expression. Methods: Two SAGE cDNA libraries were constructed, one using a pool of mRNA obtained from five GH-secreting pituitary tumors and another from three normal pituitaries. Genes differentially expressed between the libraries were further validated by real-time PCR in 22 GH-secreting pituitary tumors and in 15 normal pituitaries. Results: Computer-generated genomic analysis tools identified 13 722 and 14 993 exclusive genes in normal and adenoma libraries respectively. Both shared 6497 genes, 2188 were underexpressed and 4309 overexpressed in tumoral library. In adenoma library, 33 genes encoding RPs were underexpressed. Among these, RPSA, RPS3, RPS14, and RPS29 were validated by real-time PCR. Conclusion: We report the first SAGE library from normal pituitary tissue and GH-secreting pituitary tumor, which provide quantitative assessment of cellular transcriptome. We also validated some downregulated genes encoding RPs. Altogether, the present data suggest that the underexpression of the studied RP genes possibly collaborates directly or indirectly with other genes to modify cell cycle arrest, DNA repair, and apoptosis, leading to an environment that might have a putative role in the tumorigenesis, introducing new perspectives for further studies on molecular genesis of somatotrophinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin A and its metabolite retinoic acid (RA) are essential elements for normal lung development and the differentiation of lung epithelial cells. We previously showed that RA rapidly activated cyclic AMP response element-binding protein (CREB) in a nonclassical manner in normal human tracheobronchial epithelial (NHTBE) cells. In the present study, we further demonstrated that this nonclassical signaling of RA on the activation of CREB plays a critical role in regulating the expression of airway epithelial cell differentiation markers, the MUC2, MUC5AC, and MUC5B genes. We found that RA rapidly activates the protein kinase Calpha isozyme and transmits the activation signal to CREB via the Raf/MEK/extracellular signal-regulated kinase/p90 ribosomal S6 kinase (RSK) pathway. Activated RSK translocated from the cytoplasm to the nucleus, where it phosphorylates CREB. Activated CREB then binds to a cis-acting replication element motif on the promoter (at nucleotides [nt] -878 to -871) of the MUC5AC gene. The depletion of CREB using small interfering RNA abolished not only the RA-induced MUC5AC but also RA-induced MUC2 and MUC5B. Taken together, our findings demonstrate that CREB activation via this nonclassical RA signaling pathway may play an important role in regulating the expression of mucin genes and mediating the early biological effects of RA during normal mucous differentiation in NHTBE cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a human terato-carcinoma cell line, PA-1, the functional role of the oncogenes and tumor suppressor gene involved in the multistep process of carcinogenesis have been analyzed. The expression of AP-2 was strongly correlated with the susceptibility to ras transformation. The differential responsiveness to growth factors between stage 1 ras resistant cells and stage 2 ras susceptible cells was observed, indicating that the ability of stage 2 cells to respond to the mutated ras oncogenes in transformation correlated with the ability to be stimulated by certain growth factors. Using differential screening of cDNA libraries, a number of differentially expressed cDNA clones was isolated. One of those, clone 12, is overexpressed in ras transformed stage 3 cells. The amino acid sequence of clone 12 is almost identical to a mouse LLrep3 gene that was growth-regulated, and 78% similar to a yeast ribosomal protein S4. These results suggest that the S4 gene may be involved in regulation of growth. Clone 9 is expressed in stage 1 ras resistant cells (3.5-kb and 3.0-kb transcripts) but the expression of this clone in stage 2 ras susceptible cells and stage 3 ras-transformed cells is greatly diminished. The expression of this cDNA clone was increased to at least five fold in ras resistant cells and nontumorigenic hybrids treated with retinoic acid but not increased in retinoic acid treated ras susceptible cells, ras transformed cells and the tumorigenic segregants. Partial sequence of this clone showed no homology to the sequences in Genbank. These findings suggest that clone 9 could be a suppressor gene or the genes that are involved in the biochemical pathway of tumor suppression or neurogenic differentiation. The apparent pleiotropic effect of the loss of this suppressor gene function support Harris' proposal that tumor suppressor genes regulate differentiation. The tumor suppressor gene may act as negative regulator of tumor growth by controlling gene expression in differentiation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic analysis is a powerful method for analyzing the function of specific genes in development. I sought to identify novel genes in the mouse using a genetic analysis relying on the expression pattern and phenotype of mutated genes. To this end, I have conducted a gene trap screen using the vector $\rm SA\beta geo,$ a promoterless DNA construct that encodes a fusion protein with lacZ and neomycin resistance activities. Productive integration and expression of the $\beta$geo protein in embryonic stem (ES) cells requires integration into an active transcription unit. The endogenous regulatory elements direct reporter gene expression which reflects the expression of the endogenous gene. Of eight mouse lines generated from gene trap ES cell clones, four showed differential regulation of $\beta$geo activity during embryogenesis. These four were analyzed in more detail.^ Three of the lines RNA 1, RNA2 and RNA 3 had similar expression patterns, within subsets of cells in sites of embryonic hematopoiesis. Cloning of the trapped genes revealed that all three integrations had occurred within 45S rRNA precursor transcription units. These results imply that there exists in these cells some mechanism responsible for the efficient production of the $\beta$geo protein from an RNA polymerase I transcript that is not present in most of the cells in the embryo.^ The fourth line, GT-2, showed widespread, dynamic expression. Many of the sites of expression were important classic embryonic induction systems. Cloning of the sequences fused to the $5\sp\prime$ end of the $\beta$geo sequence revealed that the trapped gene contained significant sequence homology with a previously identified human sequence HumORF5. An open reading frame of this sequence is homologous to a group of eukaryotic proteins that are members of the RNA helicase superfamily I.^ Analysis of the gene trap lines suggests that potentially novel developmental mechanisms have been uncovered. In the case of RNA 1, 2 and 3, the differential production of ribosomal RNAs may be required for differentiation or function of the $\beta$geo positive hematopoietic cells. In the GT-2 line, a previously unsuspected temporal and spatial regulation of a putative RNA helicase implies a role for this activity during specific aspects of mouse development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Involvement of E. coli 23S ribosomal RNA (rRNA) in decoding of termination codons was first indicated by the characterization of a 23S rRNA mutant that causes UGA-specific nonsense suppression. The work described here was begun to test the hypothesis that more 23S rRNA suppressors of specific nonsense mutations can be isolated and that they would occur non-randomly in the rRNA genes and be clustered in specific, functionally significant regions of rRNA.^ Approximately 2 kilobases of the gene for 23S rRNA were subjected to PCR random mutagenesis and the amplified products screened for suppression of nonsense mutations in trpA. All of the suppressor mutations obtained were located in a thirty-nucleotide part of the GTPase center, a conserved rRNA sequence and structure, and they and others made in that region by site-directed mutagenesis were shown to be UGA-specific in their suppression of termination codon mutations. These results proved the initial hypothesis and demonstrated that a group of nucleotides in this region are involved in decoding of the UGA termination codon. Further, it was shown that limitation of cellular availability or synthesis of L11, a ribosomal protein that binds to the GTPase center rRNA, resulted in suppression of termination codon mutations, suggesting the direct involvement of L11 in termination in vivo.^ Finally, in vivo analysis of certain site-specific mutations made in the GTPase center RNA demonstrated that (a) the G$\cdot$A base pair closing the hexanucleotide hairpin loop was not essential for normal termination, (b) the "U-turn" structure in the 1093 to 1098 hexaloop is critical for normal termination, (c) nucleotides A1095 and A1067, necessary for the binding to ribosomes of thiostrepton, an antibiotic that inhibits polypeptide release factor binding to ribosomes in vitro, are also necessary for normal peptide chain termination in vivo, and (d) involvement of this region of rRNA in termination is determined by some unique subset structure that includes particular nucleotides rather than merely by a general structural feature of the GTPase center.^ This work advances the understanding of peptide chain termination by demonstrating that the GTPase region of 23S rRNA participates in recognition of termination codons, through an associated ribosomal protein and specific conserved nucleotides and structural motifs in its RNA. ^