959 resultados para retinoic acid inducible protein I


Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-trans-retinoic acid (atRA) appears to affect Th1-Th2 differentiation and its effects on immune responses might also be mediated by dendritic cell (DC). Nonetheless, studies have been showing contradictory results since was observed either induction or inhibition of DC differentiation. Our aim was to investigate atRA action on human monocyte derived DC differentiation. For this purpose we tested pharmacological and physiological doses of atRA with or without cytokines. Cell phenotypes were analyzed by flow cytometry and function was investigated by phagocytosis and respiratory burst. DC, positive control group, was differentiated with GM-CSF and IL-4 and maturated with TNF-alpha. We demonstrated that atRA effects depend on the dose used as pharmacological doses inhibited expression of all phenotypic markers tested while a physiological dose caused cell differentiation. However, atRA combined or not with cytokines did not promote DC differentiation. In fact, atRA was detrimental on IL-4 property as a DC inductor. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The secreted cochaperone STI1 triggers activation of protein kinase A (PKA) and ERK1/2 signaling by interacting with the cellular prion (PrPC) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here, we investigated whether STI1 triggers PrPC trafficking and tested whether this process controls PrPC-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrPC, induced PrPC endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrPC; however, heterologous expression of PrPC reconstituted both PKA and ERK1/2 activation. In contrast, a PrPC mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrPC endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion protein (PrP(C)) interaction with stress inducible protein 1 (STI1) mediates neuronal survival and differentiation. However, the function of PrP(C) in astrocytes has not been approached. In this study, we show that STI1 prevents cell death in wild-type astrocytes in a protein kinase A-dependent manner, whereas PrP(C)-null astrocytes were not affected by STI1 treatment. At embryonic day 17, cultured astrocytes and brain extracts derived from PrP(C)-null mice showed a reduced expression of glial fibrillary acidic protein (GFAP) and increased vimentin and nestin expression when compared with wild-type, suggesting a slower rate of astrocyte maturation in PrP(C)-null animals. Furthermore, PrP(C)-null astrocytes treated with STI1 did not differentiate from a flat to a process-bearing morphology, as did wild-type astrocytes. Remarkably, STI1 inhibited proliferation of both wild-type and PrP(C)-null astrocytes in a protein kinase C-dependent manner. Taken together, our data show that PrP(C) and STI1 are essential to astrocyte development and act through distinct signaling pathways.(C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in the cytosolic solubilization of fatty acids during fat absorption. In the current studies, the interaction of L-FABP with a range of lipophilic drugs has been evaluated to explore the potential for L-FABP to provide an analogous function during the absorption of lipophilic drugs. Binding affinity for L-FABP was assessed by displacement of a fluorescent marker, 1-anilinonaphthalene-8-sulfonic acid (ANS), and the binding site location was determined via nuclear magnetic resonance chemical shift perturbation studies. It was found that the majority of drugs bound to L-FABP at two sites, with the internal site generally having a higher affinity for the compounds tested. Furthermore, in contrast to the interaction of L-FABP with fatty acids, it was demonstrated that a terminal carboxylate is not required for specific binding of lipophilic drugs at the internal site of L-FABP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in cytosolic solubilization of fatty acids. In addition, L-FABP has been shown to bind endogenous and exogenous lipophilic compounds, suggesting that it may also play a role in modulating their absorption and disposition within enterocytes. Previously, we have described binding of L-FABP to a range of drugs, including a series of fibrates. In the present study, we have generated structural models of L-FABP-fibrate complexes and undertaken thermodynamic analysis of the binding of fibrates containing either a carboxylic acid or ester functionality. Analysis of the current data reveals that both the location and the energetics of binding are different for fibrates that contain a carboxylate compared to those that do not. As such, the data presented in this study suggest potential mechanisms that underpin molecular recognition and dictate specificity in the interaction between fibrates and L-FABP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebrate forelimbs arise as bilateral appendages from the lateral plate mesoderm (LPM). Mutants in aldh1a2 (raldh2), an embryonically expressed gene encoding a retinoic acid (RA)-synthesizing enzyme, have been used to show that limb development and patterning of the limb bud are crucially dependent on RA signaling. However, the timing and cellular origin of RA signaling in these processes have remained poorly resolved. We have used genetics and chemical modulators of RA signaling to resolve these issues in the zebrafish. By rescuing pectoral fin induction in the aldh1a2/neckless mutant with exogenous RA and by blocking RA signaling in wild-type embryos, we find that RA acts as a permissive signal that is required during the six- to eight-somite stages for pectoral fin induction. Cell-transplantation experiments show that RA production is not only crucially required from flanking somites, but is sufficient to permit fin bud initiation when the trunk mesoderm is genetically ablated. Under the latter condition, intermediate mesoderm alone cannot induce the pectoral fin field in the LPM. We further show that induction of the fin field is directly followed by a continued requirement for somite-derived RA signaling to establish a prepattern of anteroposterior fates in the condensing fin mesenchyme. This process is mediated by the maintained expression of the transcription factor hand2, through which the fin field is continuously posteriorized, and lasts up to several hours prior to limb-budding. Thus, RA signaling from flanking somites plays a dual early role in the condensing limb bud mesenchyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small variations in signalling pathways have been linked to phenotypic diversity and speciation. In vertebrates, teeth represent a reservoir of adaptive morphological structures that are prone to evolutionary change. Cyprinid fish display an impressive diversity in tooth number, but the signals that generate such diversity are unknown. Here, we show that retinoic acid (RA) availability influences tooth number size in Cyprinids. Heterozygous adult zebrafish heterozygous for the cyp26b1 mutant that encodes an enzyme able to degrade RA possess an extra tooth in the ventral row. Expression analysis of pharyngeal mesenchyme markers such as dlx2a and lhx6 shows lateral, anterior and dorsal expansion of these markers in RA-treated embryos, whereas the expression of the dental epithelium markers dlx2b and dlx3b is unchanged. Our analysis suggests that changes in RA signalling play an important role in the diversification of teeth in Cyprinids. Our work illustrates that through subtle changes in the expression of rate-limiting enzymes, the RA pathway is an active player of tooth evolution in fish.