924 resultados para programmed death 1 receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Inhibitory signals mediated via molecules such as programmed death-1 (PD-1) play a critical role in downmodulating immune responses and maintaining peripheral tolerance. We investigated the involvement of cytokines and PD-1 engagement in mediating the T-cell unresponsiveness to bacterial and ubiquitous antigens in periodontal diseases. Methods: Gingival and peripheral blood samples from healthy individuals and patients with chronic periodontitis were collected and used for the subsequent assays. Leukocytes in the lesion site and blood were evaluated using flow cytometry. The production of interferon-gamma, interleukin-10, and transforming growth factor-P proteins was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of PD-1+cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and PD-1 colocalization. Results: T cells from patients with chronic periodontitis proliferated poorly in response to Aggregatibacter actinomycetem comitans (previously Actinobacillus actinomycetemcomitans) antigen. T-cell unresponsiveness was not associated with imbalanced cytokine production. However, T cells from patients with chronic periodontitis expressed significantly higher levels of PD-1 either upon isolation or after culture with antigens. Moreover, PD-1 blocking did not result in significant T-cell proliferation in cells cultured with phytohemagglutinin or bacterial antigens. The blockade of PD-1 resulted in the increased production of IFN-gamma. In addition, CD4+ and CD8+ T cells expressing PD-1 accumulated in lesions with chronic periodontitis. Conclusion: These data show that PD-1 engagement could be involved in the modulation of IFN-gamma production by T cells in patients with chronic periodontitis. J Periodontol 2009,80:1833-1844.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a malignant myeloproliferative disease with a characteristic chronic phase (cp) of several years before progression to blast crisis (bc). The immune system may contribute to disease control in CML. We analyzed leukemia-specific immune responses in cpCML and bcCML in a retroviral-induced murine CML model. In the presence of cpCML and bcCML expressing the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen, leukemia-specific cytotoxic T lymphocytes (CTLs) became exhausted. They maintained only limited cytotoxic activity, and did not produce interferon-gamma or tumor necrosis factor-alpha or expand after restimulation. CML-specific CTLs were characterized by high expression of programmed death 1 (PD-1), whereas CML cells expressed PD-ligand 1 (PD-L1). Blocking the PD-1/PD-L1 interaction by generating bcCML in PD-1-deficient mice or by repetitive administration of alphaPD-L1 antibody prolonged survival. In addition, we found that PD-1 is up-regulated on CD8(+) T cells from CML patients. Taken together, our results suggest that blocking the PD-1/PD-L1 interaction may restore the function of CML-specific CTLs and may represent a novel therapeutic approach for CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The coinhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PDL1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcmlike cells. © 2015 Blake et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E-2 (PGE(2)) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurogenesis occurs in two distinct regions of the adult brain; the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the subventricular zone (SVZ) lining the lateral ventricles. It is now well-known that adult hippocampal neurogenesis can be modulated by a number of intrinsic and extrinsic factors e.g. local signalling molecules, exercise, environmental enrichment and learning. Moreover, levels of adult hippocampal neurogenesis decrease with age, at least in rodents, and alterations in hippocampal neurogenesis have been reported in animal models and human studies of neuropsychiatric and neurodegenerative conditions. Neuroinflammation is a common pathological feature of these conditions and is also a potent modulator of adult hippocampal neurogenesis. Recently, the orphan nuclear receptor TLX has been identified as an important regulator of adult hippocampal neurogenesis as its expression is necessary to maintain the neural precursor cell (NPC) pool in the adult DG. Likewise, exposure of animals to voluntary exercise has been consistently demonstrated to promote adult hippocampal neurogenesis. Lentivirus (LV)- mediated gene transfer is a useful tool to elucidate gene function and to explore potential therapeutic candidates across an array of conditions as it facilitates sustained gene expression in both dividing and post-mitotic cell populations. Both intrinsic and extrinsic factors are important regulators of adult hippocampal neurogenesis. Examining how these factors are affected by an inflammatory stimulus, and the subsequent effects on adult hippocampal neurogenesis provides important information for the development of novel treatment strategies for neuropsychiatric and neurodegenerative conditions in which adult hippocampal neurogenesis is impaired. The aims of the series of experiments presented in this thesis were to examine the effect of the pro-inflammatory cytokine interleukin-1β (IL-1β) on adult hippocampal NPCs both in vitro and in vivo. In vitro, we have shown that IL-1β reduces proliferation of adult hippocampal NPCs in a dose and time-dependent manner. In addition, we have demonstrated that TLX expression is reduced by IL-1β. Blockade of IL-1β signalling prevented both the IL-1β-induced reduction in cell proliferation and TLX expression. In vivo, we examined the effect of short term and long term exposure to LV-IL-1β in sedentary mice and in mice exposed to voluntary running. We demonstrated that impaired hippocampal neurogenesis is only evident after long term exposure to IL-1β. In mice exposed to voluntary running, hippocampal neurogenesis is significantly increased following short-term but not long-term exposure to running. Moreover, short-term running effectively prevents any IL-1β-induced effects on hippocampal neurogenesis; however, no such effects are seen following long-term exposure to running.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapeutic antibodies targeting programmed cell death 1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here, we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytotoxic T cells that are present in tumors and capable of recognizing tumor epitopes are nevertheless generally impotent in eliciting tumor rejection. Thus, identifying the immune escape mechanisms responsible for inducing tumor-specific CD8(+) T-cell dysfunction may reveal effective strategies for immune therapy. The inhibitory receptors PD-1 and Tim-3 are known to negatively regulate CD8(+) T-cell responses directed against the well-characterized tumor antigen NY-ESO-1. Here, we report that the upregulation of the inhibitory molecule BTLA also plays a critical role in restricting NY-ESO-1-specific CD8(+) T-cell expansion and function in melanoma. BTLA-expressing PD-1(+)Tim-3(-) CD8(+) T cells represented the largest subset of NY-ESO-1-specific CD8(+) T cells in patients with melanoma. These cells were partially dysfunctional, producing less IFN-γ than BTLA(-) T cells but more IFN-γ, TNF, and interleukin-2 than the highly dysfunctional subset expressing all three receptors. Expression of BTLA did not increase with higher T-cell dysfunction or upon cognate antigen stimulation, as it does with PD-1, suggesting that BTLA upregulation occurs independently of functional exhaustion driven by high antigen load. Added with PD-1 and Tim-3 blockades, BTLA blockade enhanced the expansion, proliferation, and cytokine production of NY-ESO-1-specific CD8(+) T cells. Collectively, our findings indicate that targeting BTLA along with the PD-1 and Tim-3 pathways is critical to reverse an important mechanism of immune escape in patients with advanced melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding of immune inhibitory receptor Programmed Death 1 (PD-1) on T cells to its ligand PD-L1 has been implicated as a major contributor to tumor induced immune suppression. Clinical trials of PD-L1 blockade have proven effective in unleashing therapeutic anti-tumor immune responses in a subset of patients with advanced melanoma, yet current response rates are low for reasons that remain unclear. Hypothesizing that the PD-1/PD-L1 pathway regulates T cell surveillance within the tumor microenvironment, we employed intravital microscopy to investigate the in vivo impact of PD-L1 blocking antibody upon tumor-associated immune cell migration. However, current analytical methods of intravital dynamic microscopy data lack the ability to identify cellular targets of T cell interactions in vivo, a crucial means for discovering which interactions are modulated by therapeutic intervention. By developing novel imaging techniques that allowed us to better analyze tumor progression and T cell dynamics in the microenvironment; we were able to explore the impact of PD-L1 blockade upon the migratory properties of tumor-associated immune cells, including T cells and antigen presenting cells, in lung tumor progression. Our results demonstrate that early changes in tumor morphology may be indicative of responsiveness to anti-PD-L1 therapy. We show that immune cells in the tumor microenvironment as well as tumors themselves express PD-L1, but immune phenotype alone is not a predictive marker of effective anti-tumor responses. Through a novel method in which we quantify T cell interactions, we show that T cells are largely engaged in interactions with dendritic cells in the tumor microenvironment. Additionally, we show that during PD-L1 blockade, non-activated T cells are recruited in greater numbers into the tumor microenvironment and engage more preferentially with dendritic cells. We further show that during PD-L1 blockade, activated T cells engage in more confined, immune synapse-like interactions with dendritic cells, as opposed to more dynamic, kinapse-like interactions with dendritic cells when PD-L1 is free to bind its receptor. By advancing the contextual analysis of anti-tumor immune surveillance in vivo, this study implicates the interaction between T cells and tumor-associated dendritic cells as a possible modulator in targeting PD-L1 for anti-tumor immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/macrophages under the control of the colony stimulating factor-1 receptor promoter. Transgenic macrophages infiltrated and resided in all organs and expressed PPCA at high levels. Correction occurred in hematopoietic tissues and nonhematopoietic organs, including the central nervous system. PPCA-expressing perivascular and leptomeningeal macrophages were detected throughout the brain of recipient mice, although some neuronal cells, such as Purkinje cells, continued to show storage and died. GS mice crossed into the transgenic background reflected the outcome of bone marrow-transplanted mice, but the course of neuronal degeneration was delayed in this model. These studies present definite evidence that macrophages alone can provide a source of corrective enzyme for visceral organs and may be beneficial for neuronal correction if expression levels are sufficient.