998 resultados para prey selection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduced grouper species peacock hind (Cephalopholis argus), was the dominant large-body piscivore on the Main Hawaiian Island (MHI) reefs assessed by underwater visual surveys in this study. However, published data on C. argus feeding ecology are scarce, and the role of this species in Hawaiian reef ecosystems is presently not well understood. Here we provide the first comprehensive assessment of the diet composition, prey electivity (dietary importance of prey taxa compared to their availability on reefs), and size selectivity (prey sizes in the diet compared to sizes on reefs) of this important predator in the MHI. Diet consisted 97.7% of fishes and was characterized by a wide taxonomic breadth. Surprisingly, feeding was not opportunistic, as indicated by a strongly divergent electivity for different prey fishes. In addition, whereas some families of large-body species were represented in the diet exclusively by recruit-size individuals (e.g., Aulostomidae), several families of smaller-body species were also represented by juveniles or adults (e.g., Chaetodontidae). Both the strength and mechanisms of the effects of C. argus predation are therefore likely to differ among prey families. This study provides the basis for a quantitative estimate of prey consumption by C. argus, which would further increase understanding of impacts of this species on native fishes in Hawaii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Qualitative discrimination criteria are employed commonly to distinguish cultural shell middens from natural shell deposits. Quantitative discrimination criteria remain less developed beyond an assumption that natural shell beds tend to contain a wider range of shell sizes compared to cultural shell middens. This study further tests this assumption and provides the first comparative quantitative analysis of shell sizes from cultural middens, bird middens, and beach shell beds. Size distributions of opercula of the marine gastropod Turbo undulatus within two modern Pacific Gull (Larus pacificus) middens are compared with two Aboriginal middens (early and late Holocene) and two modern beach deposits from southeast Australia. Results reveal statistically significant differences between bird middens and other types of shell deposits, and that opercula size distributions are useful to distinguish Aboriginal middens from bird middens but not from beach deposits. Supplementary qualitative analysis of taphonomic alteration of opercula reveal similar opercula breakage patterns in human and bird middens, and further support previously recognised criteria to distinguished beach deposits (water rolling and bioerosion) and human middens (burning). Although Pacific Gulls are geographically restricted to southern Australia, the known capacity of gulls (Larus spp.) in other coastal contexts around the world to accumulate shell deposits indicates the broader methodological relevance of our study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to predict the likely ecological impacts of invasive species in fresh waters is a pressing research requirement. Whilst comparisons of species traits and considerations of invasion history have some efficacy in this respect, we require robust methods that can compare the effects of native and invasive species. Here, we utilise comparative functional responses and prey selectivity experiments to understand and predict the ecological impact of an invader as compared to a native. We compared the predatory functional responses of an emerging invasive species in Europe, the 'killer shrimp', Dikerogammarus villosus, and an analogous native species, Gammarus pulex, towards three representative prey species: Asellus aquaticus, Daphnia magna and Chironomus sp. Furthermore, as ecological impact may be greater for invasive species with more indiscriminate feeding habits, we compared the selectivity for the three prey types between the invasive and native species. In both the presence and absence of experimental habitats, large D. villosus, and those matched for body size with G. pulex, generally showed higher (Type II) functional responses than G. pulex, with the invasive species exhibiting higher maximum feeding rates. Further, D. villosus exhibited significantly more indiscriminate prey selection compared with G. pulex, a trait that became more evident as the invader increased in size. Differences in functional responses and prey selectivity were prey species specific, with higher to lower predicted impacts in the order A. aquaticus, D. magna and Chironomus sp. This is in accord with the impact of this invasive species on macroinvertebrates in the field. We thus provide understanding of the known ecological impact of D. villosus and discuss the utility of the phenomenological use of comparative functional responses and resource use as a tool through which the potential ecological impacts of invasive species may be identified. © 2013 John Wiley & Sons Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nesticodes rufipes is widely distributed in tropical and subtropical regions, being strongly associated with humans. However, few behavioral and ecological studies have investigated interspecific interactions between these spiders and insects of medical and veterinary importance. Here, we have investigated prey choice by N. rufipes when two different prey species, Musca domestica and Dermestes ater, were offered simultaneously. We also quantified the capture of these prey types by this predator in a poultry house and analyzed the association between prey-choice with physical characteristics of the prey. Finally, we discuss whether there is an antagonistic intraguild interaction in such a system composed of N. rufipes (top predator), D. ater (predator of larvae of M. domestica and prey of N. rufipes) and M. domestica (N. rufipes' prey). We found that Musca domestica were more abundant than D. ater in N. rufipes webs in the poultry house. Spiders given a choice of adults of M. domestica plus adults of D. ater, and also on adults plus larvae of M. domestica, preyed more on adult flies than on the other prey types. This preference was probably associated with the lesser mass and shorter lengths of adult flies. Our experiments demonstrated that the predation impact of N. rufipes on D. ater is low when compared to M. domestica. This result provides evidence that an antagonistic interaction between these predators does not occur, suggesting that they are in fact acting either synergistically or additively on M. domestica prey.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The vertebrate predators of post-metamorphic anurans were quantified and the predator-prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator-prey interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in the understanding of ecological factors determining predatorprey interactions have provided a strong theoretical background on diet preferences of predators. We examined patterns of jaguar predation on caiman in southern Pantanal, Brazil. We investigated factors affecting predation rates and vulnerability of caiman to predation by jaguars. We recorded 114 caiman mortality incidents. Predation accounted for 62.3% (n = 71) of all caiman found dead, while other causes of mortality (nonpredation) accounted for 37.7% (n = 43). We found that jaguars prey on a broad size range of caiman body and caiman predation was influenced by distance to forests. During dry seasons, 70% (n = 49) of deaths were due to predation, while 30% (n = 21) were due to nonpredation causes. However, we found no significant relationship between annual and monthly killings of caiman and rainfall totals by year and month (r = 0.130, r = -0.316). The annual flooding regime may be a more important factor influencing prey selection by jaguars. Although neotropical crocodilians are relatively well studied, their interactions with jaguars have been mostly ignored and should be prioritized in future studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Behaviours related to foraging and feeding in predator-prey systems are fundamental to our understanding of food webs. From the perspective of a predator, the selection of prey size depends upon a number of factors including prey vulnerability, prey size, and the predator's motivation to eat. Thus, feeding motivation and prey visual cues are supposed to influence predator decisions and it is predicted that prey selection by visual cues is modulated by the predator's stomach fullness prior to attacking a prey. This study was conducted using an animal model from the rocky shores ecosystem, a predatory fish, the frillfin goby Bathygobius soporator, and a benthic prey, the mottled shore crab Pachygrapsus transversus. Our results demonstrate that frillfin gables are capable of visually evaluating prey size and that the size evaluation process is modulated by the level of stomach fullness. Predators with an empty stomach (0% fullness) attacked prey that was larger than the predicted optimal size. Partially satiated predators (50% stomach fullness) selected prey close to the optimal size, while fully satiated predators (100% stomach fullness) showed no preference for size. This finding indicates an integrative response of the predator that depends on the input of both internal and external sensory information when choosing prey. Predator perceptions of visual cues (prey size) and stomach fullness modulate foraging decisions. As a result, a flexible feeding behaviour emerges, evidencing a clearly adaptive response in line with optimal foraging theory predictions. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three members of a group of liontailed macaques (Macaea silenus) were seen to use leaves for food preparation. Other examples of prey-selection and hunting behaviour in liontailed macaques reflect individual- and group-specific skills. The absence of similar patterns in bonnet macaques (Macaca radiata) living in the same habitat might be related to differences in the social design and indicate the high significance of social aspects for the occurrence and manifestation of innovative behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A feeding strategy model is proposed using stomach content and resource availability data as a modification to Costello (1990) and Amundsen et al. (1996). Incorporation of feeding electivity index (E) instead of the prey-specific abundance signifies the importance of resource availability in prey selection as well as the predator's ability to specialize, generalize or avoid particular prey items at the individual and population level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lakes Victoria, Kyoga and Nabugabo had a similar native fish fauna of high species diversity. stocks of most of the native species declined rapidly and some completely disappeared after Nile perch was introduced and became well established. Although, overexploitation of the fish stocks, competition between introduced and native tilapiines and environmental degradation contributed to the reduction in fish stocks, predation by the Nile perch has contributed much to the recent drastic reductions in fish stock and could even drive the stocks to a total collapse. Nile perch is also currently the most important commercial species in Lakes victoria, Kyoga and Nabugabo and the stability of its stocks is important in the overall sustainability of the fisheries of these lakes. The question that was to be examined in this paper was whether the fisheries of Lakes Victoria, Kyogaand Nabugabo would stabilize and sustain production in the presence of high predation pressure by the Nile perch or whether the Nile perch would drive the fish stocks including itself to a collapse. I t was assumed that Nile perch driven changes in Lakes Victoria, Kyoga and Nabugabo would be driven to a level beyond which they would not change further. This would be followed by recovery and stability or the changes would continue to a point of collapse. It was assumed that Lake Albert represented the ideal stable state. The changes in the new habitats expected to be driven through a major change due to Nile perch predation to a stage where there would be no further changes. After this, a feedback mechanism would move the driven variable towards recovery. The variables would then stabilize and oscillate will an amplitude which approximates to what would be recorded in Lake Albert. Alternatively, the changes would proceed to a stage where the fishery would collapse. The specific hypothesis was that fish species composition and diversity, prey selection by the Nile perch and life history characteristics of the Nile perch in the new habitats would change and stabilize

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laboratory and field investigations were conducted to study the food habit of Chinese perch Siniperca chuatsi (Basilewsky) from first feeding through adult stage. Only fish larvae were consumed by Chinese perch larvae (2-21 days from hatching), and the presence of zooplankton did not have any significant effect on their survival rate. The ability of Chinese perch to feed on zooplankton is clearly limited by some innate factor. Instead of gill rakers, Chinese perch larvae have well-developed sharp teeth at the first feeding stage, and are well adapted to the piscivorous feeding habit unique to the larvae of Chinese perch, e.g. they bite and ingest the tails of other fish larvae. At the first feeding stage (2 days from hatching), daily rations were both very low, either in light or complete darkness. Although early-staged Chinese perch larvae (7-17 days from hatching) could feed in complete darkness, their daily rations were always significantly higher in light than in complete darkness. Late-staged Chinese perch larvae (21 days from hatching) were able to feed in complete darkness as well as in light, similar to the case of Chinese perch yearlings. Chinese perch yearlings (total length, 14-16 cm) consumed prey fish only and refused shrimp when visual cues were available (in light), but they consumed both prey when visual cues were not available (in complete darkness), suggesting that prey consumption by Chinese perch yearlings is affected by their sensory modality in predation. Both prey were found in the stomachs of similar-sized Chinese perch (total length, 14-32 cm) from their natural habitat, suggesting that shrimp are consumed by Chinese perch at night. Prey selection of Chinese perch with a length >38 cm, which consumed only fish in the field, appears to be based upon prey size instead of prey type. These results suggest that although environmental factors (e.g. light intensity) affect prey detection by Chinese perch, this fish is anatomically and behaviourally predisposed to prey on live fish from first feeding. This makes it a difficult fish to cultivate using conventional feeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present investigation reviews published data on the feeding rates and prey selection of Oithona similis females, Calanus finmarchicus nauplii and females in the Irminger Sea in April/May and July/August 2002. Our aim was to examine how the feeding rates and prey selection of these three copepod stages respond to concomitant changes in microplankton community composition and prey abundance. Copepods typically ingested prey overall according to its ambient concentration although significant species and stage-specific differences in prey-type ingestion and selection were apparent. Despite being of comparable weight, the ingestion rates of C. finmarchicus nauplii were always higher than those of the O. similis females. Moreover, C. finmarchicus nauplii and O. similis females fed preferentially on diatoms and ciliates respectively, whereas adult female C. finmarchicus showed limited prey selectivity. Copepod grazing impact on total and on ciliates/dinoflagellates standing stock was <0.5 and <2%, respectively. We attribute this result to a combination of low grazing rates, low copepod abundance and low microplankton biomass, all of which are indicative of the non-bloom conditions under which these experiments were conducted. The differences in copepod feeding rates and prey selection we report reflect species and stage-specific eco-physiological adaptations, which may act as important driving forces for marine ecosystem structuring and functioning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breeding seabirds are threatened by human activities that affect nesting and foraging habitat. In Canada, one of the seabirds most at risk of extirpation is the Roseate Tern, Sterna dougallii. Although critical nesting habitat has been identified for the Roseate Tern in Canada, its foraging locations and the diet of its chicks are unknown. Therefore, our goal was to determine the foraging locations and diet of chicks of Roseate Tern breeding on Country Island, Nova Scotia, which is one of Canada's two main breeding colonies. In 2003 and 2004, we radio-tracked the Roseate Tern by plane to locate foraging areas and conducted feeding watches to determine the diet of chicks. Roseate Tern foraged approximately 7 km from the breeding colony over shallow water < 5 m deep. In both years, sand lance, Ammodytes spp., was the most common prey item delivered to chicks, followed by hake, Urophycis spp. Our results are consistent with previous work at colonies in the northeastern United States, suggesting that throughout its range, this species may be restricted in both habitat use and prey selection. The reliance on a specific habitat type and narrow range of prey species makes the Roseate Tern generally susceptible to habitat perturbations and reductions in the availability of prey.