95 resultados para polymethylmethacrylate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid siloxane-polymethylmethacrylate (PMMA) nanocomposites with covalent bonds between the inorganic (siloxane) and organic (polymer) phases were prepared by the sot gel process through hydrolysis and polycondensation of 3-(trimethoxysilyl)propylmethacrylate (TMSM) and polymerization of methylmethacrylate (MMA) using benzoyl peroxide (BPO) as initiator. The effect of MMA, BPO and water contents on the viscoelastic behaviour of these materials was analysed during gelation by dynamic rheological measurements. The changes in storage (G') and loss moduli (G), complex viscosity (eta*) and phase angle (6) were measured as a function of the reaction time showing the viscous character of the sot in the initial step of gelation and its progressive transformation to an elastic gel. This study was complemented by Si-29 and C-13 solid-state nuclear magnetic resonance (NMR/MAS) measurements of dried gel. The analysis of the experimental results shows that linear chains are formed in the initial step of the gelation followed by a growth of branched structures and formation of a three-dimensional network. Near the gel point this hybrid material demonstrates the typical scaling behaviour expected from percolation theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractures of iliac body are generally consequences of traumas of great impact. These fractures lead to a lack of locomotor response and in specific cases, surgery is needed. Among the possible therapeutic lines, implants become a good option. In this paper, the authors used dog corpses to develop a surgery technique of iliac osteosynthesis, employing nylon clamps and bone cement of polymethylmethacrylate (PMMA). Sixteen hemi pelvises of eight dog corpses, which had its iliac bodies totally fractured previously, were utilized. The osteosynthesis was reached through the implantation of six nylon clamps, distributed equally between the bone fragments. With the use of the nylon clamps there were bone realignment and a contact surface to fixation of the biomaterial. The technique developed in corpses was easily executed, effective in reduction, alignment and stabilization of the fracture. The authors suggest more studies in vitro to evaluate immobilization resistance and functionality in dogs with this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites formed of a polymer-embedded layer of sub-10 nm gold nanoclusters were fabricated by very low energy (49 eV) gold ion implantation into polymethylmethacrylate. We used small angle x-ray scattering to investigate the structural properties of these metal-polymer composite layers that were fabricated at three different ion doses, both in their original form (as-implanted) and after annealing for 6 h well above the polymer glass transition temperature (150 degrees C). We show that annealing provides a simple means for modification of the structure of the composite by coarsening mechanisms, and thereby changes its properties. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720464]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cranioplasty is a commonly performed procedure. Outcomes can be improved by the use of patient specific implants, however, high costs limit their accessibility. This paper presents a low cost alternative technique to create patient specific polymethylmethacrylate (PMMA) implants using rapid prototyped mold template. We used available patient's CT-scans, one dataset without craniotomy and one with craniotomy, for computer-assisted design of a 3D mold template, which itself can be brought into the operating room and be used for fast and easy building of a PMMA implant. We applied our solution to three patients with positive outcomes and no complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN: In vitro testing of vertebroplasty techniques including pulsed jet-lavage for fat and marrow removal in human cadaveric lumbar and thoracic vertebrae. OBJECTIVE: To develop jet-lavage techniques for vertebroplasty and investigate their effect on cement distribution, injection forces, and fat embolism. SUMMARY OF BACKGROUND DATA: The main complications of cement vertebroplasty are cement leakage and pulmonary fat embolism, which can have fatal consequences and are difficult to prevent reliably by current vertebroplasty techniques. METHODS: Twenty-four vertebrae (Th8-L04) from 5 osteoporotic cadaver spines were grouped in triplets depending on bone mineral density (BMD). Before polymethylmethacrylate (PMMA) vertebroplasty, a pulsatile jet-lavage for removal of intertrabecular fat and bone marrow was performed in 2 groups with 8 specimens each, performing radial and axial irrigation from the biopsy needles. One hundred mL of Ringer solution were injected through 1 pedicle and regained by low vacuum via the contralateral pedicle. Eight control vertebrae were not irrigated. All specimens underwent standardized PMMA cement augmentation injecting 20% of the vertebral volume. Injection forces, cement distribution, and extravasations were quantified. RESULTS: All irrigation solution could be retrieved with the vacuum applied. A Kruskal-Wallis test revealed significantly higher injection forces of the control group as compared with the irrigated groups (P = 0.021). Dilatation of the syringe at forces above 300 N occurred in 75% of the untreated compared with 12.5% of the lavaged specimens. CT distribution analysis showed more homogenous cement distribution of the cement and significantly less extravasation in the irrigated specimens. CONCLUSION: The developed lavage technique for vertebroplasty showed to be feasible and reproducible. The reduction of injection forces would allow the use of more viscous PMMA cement lowering the risk for cement embolization and results in a safer procedure. The wash-out of bone marrow and the possible reduction of pulmonary fat embolism have to be verified with in vivo models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN: This is an experimental study on an artificial vertebra model and human cadaveric spine. OBJECTIVE: Characterization of polymethylmethacrylate (PMMA) bone cement distribution in the vertebral body as a function of cement viscosity, bone porosity, and injection speed. Identification of relevant parameters for improved cement flow predictability and leak prevention in vertebroplasty. SUMMARY OF BACKGROUND DATA: Vertebroplasty is an efficient procedure to treat vertebral fractures and stabilize osteoporotic bone in the spine. Severe complications result from bone cement leakage into the spinal canal or the vascular system. Cement viscosity has been identified as an important parameter for leak prevention but the influence of bone structure and injection speed remain obscure. METHODS: An artificial vertebra model based on open porous aluminum foam was used to simulate bone of known porosity. Fifty-six vertebroplasties with 4 different starting viscosity levels and 2 different injection speeds were performed on artificial vertebrae of 3 different porosities. A validation on a human cadaveric spine was executed. The experiments were radiographically monitored and the shape of the cement clouds quantitatively described with the 2 indicators circularity and mean cement spreading distance. RESULTS: An increase in circularity and a decrease in mean cement spreading distance was observed with increasing viscosity, with the most striking change occurring between 50 and 100 Pas. Larger pores resulted in significantly reduced circularity and increased mean cement spreading distance whereas the effect of injection speed on the 2 indicators was not significant. CONCLUSION: Viscosity is the key factor for reducing the risk of PMMA cement leakage and it should be adapted to the degree of osteoporosis encountered in each patient. It may be advisable to opt for a higher starting viscosity but to inject the material at a faster rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Percutaneous vertebroplasty, comprising an injection of polymethylmethacrylate (PMMA) into vertebral bodies, is a practical procedure for the stabilization of osteoporotic compression fractures as well as other weakening lesions. Cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the material plays a key role in this context. In order to enhance the safety for the patient, a rheometer system was developed to measure the cement viscosity intraoperatively. For this development, it is of great importance to know the proper viscosity to start the procedure determined by experienced surgeons and the relation between the time period when different injection devices are used and the cement viscosity. The purpose of the study was to investigate the viscosity ranges for different injection systems during conventional vertebroplasty. Clinically observed viscosity values and related time periods showed high scattering. In order to get a better understanding of the clinical observations, cement viscosity during hardening at different ambient temperatures and by simulation of the body temperature was investigated in vitro. It could be concluded, that the direct viscosity assessment with a rheometer during vertebroplasty can help clinicians to define a lower threshold viscosity and thereby decrease the risk of leakage and make adjustments to their injection technique in real time. Secondly, the acceleration in hardening of PMMA-based cements at body temperature can be useful in minimizing leakages by addressing them with a short injection break.