179 resultados para polyelectrolytes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An anionic, phosphonate-functionalized polyfluorene, i.e., poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPNa), has been synthesized by copolymerization of phosphonic acid-substituted 2,7-dibromofluorene and phenyldiboronic ester via direct Suzuki polycondensation reaction in DMF/water. Polymer PFPNa is highly soluble and emissive in water with a solubility of 60 mg/mL and a photoluminescence quantum yield of 75%. The absorption and fluorescence spectra of PFPNa are strongly dependent on pH value owing to the partial protonation of phosphate groups and the aggregation of the polymer chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, highly rough and stable surface enhanced Raman scattering (SERS)-active substrates had been fabricated by a facile layer by-layer technique. Unique lambda-DNA networks and CTAB capped silver nanoparticles (AgNP) were alternatively self-assembled on the charged mica surface until a desirable number of bilayers were reached. The as-prepared hybrid architectures were characterized by UV-vis spectroscopy, tapping mode atomic force microscopy (AFM) and confocal Raman microscopy, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bisphenol monomer 4-carboxylphenyl hydroquinone (4C-PH) containing carboxyl groups was synthesized by diazotization reaction of p-aminobenzoic acid and 1,4-benzoquinone and subsequent reductive reaction. Copolymerization of bisphenol A, 4C-PH, sodium 5,5'-carbonylbis(2-fluorobenzene-sulfonate) and 4,4'-difluorobenzophenone at various molar ratios through aromatic nucleophilic substitution reaction resulted in a new sulfonated poly(ether ether ketone) containing pendant carboxyl groups (C-SPEEK). The structures of the monomer 4C-PH and copolymers were confirmed by FT-IR and H-1 NMR. Flexible and transparent membranes with sulfonic and carboxylic acid groups as the proton conducting sites were prepared. The dependence of ion-exchange capacity (IEC), water uptake, proton conductivity and methanol permeability on the degree of sulfonation has been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel strategy in which the benzimidazole group and sulfonic group are simultaneously attached to an aromatic polymer has been reported in this paper. For this purpose, sulfonated poly(arylene ether ketone) copolymers containing carboxylic acid groups (SPAEK-x-COOH, x refers to the molar percentage Of sulfonated repeating units) are prepared by the aromatic nucleophilic polycondensation of sodium 5,5'-carbonyl-bis(2-fluobenzene-sulfonate) (SDFBP), 4,4'-difluorobenzophenone (DFBP) and phenolphthalin (PPL). Then the carboxylic acid groups attached to the SPAEK-x-COOH are transformed to benzimidazole units through condensation reactions (referred to as SPAEK-x-BI). Fourier transform infrared spectroscopy and H-1 NMR measurements are used to characterize and confirm the structures of these copolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new biocompatible film based on chitosan and poly(L-glutamic acid) (CS/PGA), created by alternate deposition of CS and PGA, was investigated. FT-IR spectroscopy, UV-vis spectroscopy and QCM were used to analyze the build-up process. The growth of CS and PGA deposition are both exponential to the deposition steps at first. After about 9 (CS/PGA) depositions, the exponential to linear transition takes place. QCM measurements combined with UV-vis spectra revealed the increase in the multilayer film growth at different pH (4.4, 5.0 and 5.5). The build-up of the multilayer stops after a few depositions at pH = 6.5. A muscle myoblast cell (C2C12) assay showed that (CS/PGA)(n) multilayer films obviously promote C2C12 attachment and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Counterions present at the surface of polyelectrolyte multilayers (PEMs) were utilized for modulation of surface wettability via ion exchange. The PEM film was dipped in aqueous solutions of different anions, respectively, and the water contact angle of the surface varied from about 10 degrees to 120 degrees, depending on the hydration characteristics of the anion. The ion exchange mechanism was verified by X-ray photoelectron spectroscopy. The process was rapid and reversible. Ionic strength of the polyelectrolyte solution used for preparing the PEMs was found to be crucial to the surface wetting properties and the reversibility and kinetics of the process, and the effects were correlated to the surface density of the excess charge and counterion. This work provides a general, facile and rapid approach of surface property modulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have demonstrated a smart polymeric transducer and aptamer/intercalating dye system that allows the label-free detection of protein with high sensitivity and selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of novel oxidation and water stable sulfonated polyimides (SPIs) were synthesized from 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), and wholly aromatic diamine 2,2'-bis(3-sulfobenzoyl) benzidine (2,2'-BSBB) for proton exchange membrane fuel cells. These polyimides could be cast into flexible and tough membranes from m-cresol solutions. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendant groups. Moreover, all BTDA-based SPI membranes exhibited much better water stability than those based on the conventional 1,4,5,8-naphthalenecarboxylic dianhydride. The improved water stability of BTDA-based polyimides was attributed to its unique binaphthalimide structure. The SPI membranes with ion exchange capacity (IEC) of 1.36-1.90 mequiv g(-1) had proton conductivity in the range of 0.41 x 10(-1) to 1. 12 x 10(-1) S cm(-1) at 20 degrees C. The membrane with IEC value of 1.90 mequiv g(-1) displayed reasonably higher proton conductivity than Nafion((R)) 117 (0.9 x 10(-1) S cm(-1)) under the same test condition and the high conductivity of 0.184 S cm(-1) was obtained at 80 degrees C. Microscopic analyses revealed that well-dispersed hydrophilic domains contribute to better proton conducting properties. These results showed that the synthesized materials might have the potential to be applied as the proton exchange membranes for PEMFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel sulfonated diamine monomer, 1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid (BAPNDS), was synthesized. A series of sulfonated polyimide copolymers were prepared from BAPNDS, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and nonsulfonated diamine 4,4'-diaminodiphenyl ether (ODA). Flexible, transparent, and mechanically strong membranes were obtained. The membranes displayed slightly anisotropic membrane swelling. The dimensional change in thickness direction was larger than that in planar. The novel SPI membranes showed higher conductivity, which was comparable or even higher than Nafion 117. Membranes exhibited methanol permeability from 0.24 x 10(-6) to 0.80 X 10(-6) cm(2)/s at room temperature, which was much lower than that of Nafion (2 x 10-6 CM2/s). The copolymers were thermally stable up to 340 degrees C. These preliminary results have proved its potential availability as proton-exchange membrane for PEMFCs or DMFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel sulfonated diamine monomer, 2,2'-bis(p-aminophenoxy)-1,1'-binaphthyl-6,6'-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30-80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945-0.161 S/cm) at 20-80 degrees C in liquid water. The membranes exhibited methanol permeability from 9 x 10(-8) to 5 X 10(-7) cm(2)/s at 20 degrees C, which was much lower than that of Nafion (2 x 10(-6) cm(2)/s). The copolymers were thermally stable up to 300 degrees C. The sulfonated polyimide copolymers with 30-60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of sulfonated polyimides (SPIs) were synthesized in in-cresol from 4,4'-binaphthyl- 1,11,8,8'-tetracarboxylic dianhydride (BNTDA), 4.4'-diaminodiphenylether-2,2-disulfonicacid (ODADS), and 4.4'-diamino-diphenyl ether (ODA) in the presence of triethylamine and benzoic acid. The resulted polyimides showed much better water resistance than the corresponding sulfonated polyimides from 1,4,5,8-naphthatenetetracarboxylic dianhydride (NTDA) and ODADS, which is contributed to the higher electron density in the carbonyl carbon atoms of BNTDA. Copolyimides S-75 and S-50 maintained their mechanical properties and proton conductivities after aging in water at 100 degrees C for 800 h. The proton conductivity of these SPIs was 0.0250-0.3565 S/cm at 20 degrees C and 100% relative humidity (RH), and increased to 0.11490.9470 S/cm at 80 degrees C and 100% RH. The methanol permeability values of these SPIs were in the range of 0.99-2.36 x 10(-7) cm(2)/S, which are much lower than that of Nafion 117 (2 x 10(-6) cm(2)/s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a green process, electrochemistry in aqueous solution without a supporting electrolyte has been described based on a simple polyelectrolyte-functionalized ionic liquid (PFIL)-modified electrode. The studied PFIL material combines features of ionic liquids and traditional polyelectrolytes. The ionic liquid part provides a high ionic conductivity and affinity to many different compounds. The polyelectrolyte part has a good stability in aqueous solution and a capability of being immobilized on different substrates. The electrochemical properties of such a PFIL-modified electrode assembly in a supporting electrolyte-free solution have been investigated by using an electrically neutral electroactive species, hydroquinone ( HQ) as the model compound. The partition coefficient and diffusion coefficient of HQ in the PFIL film were calculated to be 0.346 and 4.74 X 10(-6) cm(2) s(-1), respectively. Electrochemistry in PFIL is similar to electrochemistry in a solution of traditional supporting electrolytes, except that the electrochemical reaction takes place in a thin film on the surface of the electrode. PFILs are easily immobilized on solid substrates, are inexpensive and electrochemically stable. A PFIL-modified electrode assembly is successfully used in the flow analysis of HQ by amperometric detection in solution without a supporting electrolyte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel sulfonated aromatic dichloride monomer was successfully prepared by the reaction of 2, 5-dichlorobenzophenone with fuming sulfuric acid. Copolymerization of this monomer in the form of sodium salt (1) with N-(4-chloro-2-trifluoromethylphenyl)-5-chloro-1,8-naphthalimide (2) or bis(N-(4-chloro-2-trifluoromethylphenyl)1,4,5,8-naphthalimide (3) generated two series of novel poly(arylene-co-naphthalimide) s I-x and II-x where x represents the content of the sulfonated monomer. The synthesized copolymers with the -SO3H group in the side chains possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymers exhibited excellent stability toward water and oxidation due to the introduction of the hydrophobic CF3 groups. The sulfonated copolyimides that incorporated with 1,8-naphthalimide (I-x) exhibited better hydrolytic and oxidative stabilities than those with 1,4,5,8-naphthalimide. Copolymer I-50 membrane endured for more than 83 h in Fenton's reagent at room temperature. The mechanical properties of I-50 membrane kept almost unchanged after immersing membrane in boiling water for 196 h. The proton conductivities of copolymer films increased with increasing IEC and temperature, reaching values above 6.8 x 10(-1) S/cm at 80 degrees C.