945 resultados para plasmacytoid dendritic cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD40 ligation triggers IL-12 production by dendritic cells (DC) in vitro. Here, we demonstrate that CD40 cross-linking alone is not sufficient to induce IL-12 production by DC in vivo. Indeed, resting DC make neither the IL-12 p35 nor IL-12 p40 subunits and express only low levels of CD40. Nevertheless, after DC activation by microbial stimuli that primarily upregulate IL-12 p40 and augment CD40 expression, CD40 ligation induces a significant increase in IL-12 p35 and IL-12 p70 heterodimer production. Similarly, IL-12 p70 is produced during T cell activation in the presence but not in the absence of microbial stimuli. Thus, production of bioactive IL-12 by DC can be amplified by T cell–derived signals but must be initiated by innate signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The objective of this study was to explore the relationship between low density lipoprotein (LDL) and dendritic cell (DC) activation, based upon the hypothesis that reactive oxygen species (ROS)-mediated modification of proteins that may be present in local DC microenvironments could be important as mediators of this activation. Although LDL are known to be oxidised in vivo, and taken up by macrophages during atherogenesis; their effect on DC has not been explored previously. Methods: Human DCs were prepared from peripheral blood monocytes using GM-CSF and IL-4. Plasma LDLs were isolated by sequential gradient centrifugation, oxidised in CuSO4, and oxidation arrested to yield mild, moderate and highly oxidised LDL forms. DCs exposed to these LDLs were investigated using combined phenotypic, functional (autologous T cell activation), morphological and viability assays. Results: Highly-oxidised LDL increased DC HLA-DR, CD40 and CD86 expression, corroborated by increased DC-induced T cell proliferation. Both native and oxidised LDL induced prominent DC clustering. However, high concentrations of highly-oxidised LDL inhibited DC function, due to increased DC apoptosis. Conclusions: This study supports the hypothesis that oxidised LDL are capable of triggering the transition from sentinel to messenger DC. Furthermore, the DC clustering–activation–apoptosis sequence in the presence of different LDL forms is consistent with a regulatory DC role in immunopathogenesis of atheroma. A sequence of initial accumulation of DC, increasing LDL oxidation, and DC-induced T cell activation, may explain why local breach of tolerance can occur. Above a threshold level, however, supervening DC apoptosis limits this, contributing instead to the central plaque core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our new molecular understanding of immune priming states that dendritic cell activation is absolutely pivotal for expansion and differentiation of naïve T lymphocytes, and it follows that understanding DC activation is essential to understand and design vaccine adjuvants. This chapter describes how dendritic cells can be used as a core tool to provide detailed quantitative and predictive immunomics information about how adjuvants function. The role of distinct antigen, costimulation, and differentiation signals from activated DC in priming is explained. Four categories of input signals which control DC activation – direct pathogen detection, sensing of injury or cell death, indirect activation via endogenous proinflammatory mediators, and feedback from activated T cells – are compared and contrasted. Practical methods for studying adjuvants using DC are summarised and the importance of DC subset choice, simulating T cell feedback, and use of knockout cells is highlighted. Finally, five case studies are examined that illustrate the benefit of DC activation analysis for understanding vaccine adjuvant function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) are critical in priming adaptive T-cell responses, but the effects of ageing on interactions between DCs and T cells are unclear. This study investigated the influence of ageing on the maturation of and cytokine production by human blood-enriched DCs, and the impact on T cell responses in an allogeneic mixed leucocyte reaction (MLR). DCs from old subjects (65-75y) produced significantly less TNF-α and IFN-γ than young subjects (20-30y) in response to lipopolysaccharide (LPS), but expression of maturation markers and co-stimulatory molecules was preserved. In the MLR, DCs from older subjects induced significantly restricted proliferation of young T cells, activation of CD8+ T cells and expression of IL-12 and IFN-γ in T cells compared with young DCs. T cells from older subjects responded more weakly to DC stimulation compared with young T cells, regardless of whether the DCs were derived from young or older subjects. In conclusion, the capacity of DCs to induce T cell activation is significantly impaired by ageing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absence of lymph nodes in nonmammalian species, expression of MHCII by APCs in the periphery, and the recent findings that T cells can change their polarization status after presentation in the lymph nodes imply a role for MHCII-mediated presentation outside the organized lymphoid tissue. This study shows that MHCII+ ECs and DCs from the intestinal mucosa of the pig can present antigen to T cells in vitro. In vivo, APCs colocalize with T cells in pig and mouse intestinal mucosa. In the pig, endothelium is involved in these interactions in neonates but not in adults, indicating different roles for stromal and professional APCs in the neonate compared with the adult. The ratio of expression of DQ and DR MHCII locus products was lower on ECs than on other mucosal APCs, indicating that the two types of cells present different peptide sets. Adult nonendothelial APCs expressed a higher ratio of DQ/DR than in neonates. These results suggest that mucosal DCs can present antigen locally to primed T cells and that stromal APCs are recruited to these interactions in some cases. This raises the possibility that local presentation may influence T cell responses at the effector stage after initial presentation in the lymph node.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting cells that interact with T cells. Here we show that mouse splenic dendritic cells (DC) and bone-marrow derived DCs (BMDC) express EphB2, a member of the EphB family. EphB2 expression is modulated by ligation of TLR4 and TLR9 and also by interaction with ephrin B ligands. Co-localization of EphB2 with MHC-II is also consistent with a potential role in T cell activation. However, BMDCs derived from EphB2 deficient mice were able to present antigen in the context of MHC-II and produce T cell activating cytokines to the same extent as intact DCs. Collectively our data suggest that EphB2 may contribute to DC responses, but that EphB2 is not required for T cell activation. This result may have arisen because DCs express other members of the EphB receptor family, EphB3, EphB4 and EphB6, all of which can interact with ephrin B ligands, or because EphB2 may be playing a role in another aspect of DC biology such as migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sialostatin L (SialoL) is a secreted cysteine protease inhibitor identified in the salivary glands of the Lyme disease vector Ixodes scapularis. In this study, we reveal the mechanisms of SialoL immunomodulatory actions on the vertebrate host. LPS-induced maturation of dendritic cells from C57BL/6 mice was significantly reduced in the presence of SialoL. Although OVA degradation was not affected by the presence of SialoL in dendritic cell cultures, cathepsin S activity was partially inhibited, leading to an accumulation of a 10-kDa invariant chain intermediate in these cells. As a consequence, in vitro Ag-specific CD4(+) T cell proliferation was inhibited in a time-dependent manner by SialoL, and further studies engaging cathepsin S(-/-) or cathepsin L(-/-) dendritic cells confirmed that the immunomodulatory actions of SialoL are mediated by inhibition of cathepsin S. Moreover, mice treated with SialoL displayed decreased early T cell expansion and recall response upon antigenic stimulation. Finally, SialoL administration during the immunization phase of experimental autoimmune encephalomyelitis in mice significantly prevented disease symptoms, which was associated with impaired IFN-gamma and IL-17 production and specific T cell proliferation. These results illuminate the dual mechanism by which a human disease vector protein modulates vertebrate host immunity and reveals its potential in prevention of an autoimmune disease. The Journal of Immunology, 2009, 182: 7422-7429.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs), in peripheral tissues, derive mostly from blood precursors that differentiate into DCs under the influence of the local microenvironment. Monocytes constitute the main known DC precursors in blood and their infiltration into tissues is up-regulated during inflammation. During this process, the local production of mediators, like prostaglandins (PGs), influence significantly DC differentiation and function. In the present paper we show that treatment of blood adherent mononuclear cells with 10 mu M indomethacin, a dose achieved in human therapeutic settings, causes monocytes` progressive death but does not affect DCs viability or cell surface phenotype. This resistance of DCs was observed both for cells differentiated in vitro from blood monocytes and for a population with DCs characteristics already present in blood. This phenomenon could affect the local balance of antigen-presenting cells, influence the induction and pattern of immune responses developed under the treatment with non-steroidal anti-inflammatory drugs and, therefore, deserves further investigation. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Antigen-presenting cells, like dendritic cells (DCs) and macrophages, play a significant role in the induction of an immune response and an imbalance in the proportion of macrophages, immature and mature DCs within the tumor could affect significantly the immune response to cancer. DCs and macrophages can differentiate from monocytes, depending on the milieu, where cytokines, like interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce DC differentiation and tumor necrosis factor (TNF)-alpha induce DC maturation. Thus, the aim of this work was to analyze by immunohistochemistry the presence of DCs (S100+ or CD1a+), macrophages (CD68+), IL-4 and TNF-alpha within the microenvironment of primary lung carcinomas. Results Higher frequencies of both immature DCs and macrophages were detected in the tumor-affected lung, when compared to the non-affected lung. Also, TNF-alpha-positive cells were more frequent, while IL-4-positive cells were less frequent in neoplastic tissues. This decreased frequency of mature DCs within the tumor was further confirmed by the lower frequency of CD14-CD80+ cells in cell suspensions obtained from the same lung tissues analyzed by flow cytometry. Conclusion These data are discussed and interpreted as the result of an environment that does not oppose monocyte differentiation into DCs, but that could impair DC maturation, thus affecting the induction of effective immune responses against the tumor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Dendritic cells (DCs) play an important role in the clearance of apoptotic cells. The removal of apoptotic cells leads to peripheral tolerance, although their role is still not clear. We show that the uptake of apoptotic thymocytes by DCs converts these cells into tolerogenic DCs resistant to maturation by lipopolysaccharide, modulating the production of interleukin-12 and up-regulating the expression of transforming growth factor-beta(1) latency associated peptide. We also observed that DCs pulsed with apoptotic cells in the allogeneic context were more efficient in the expansion of regulatory T cells (Tregs), and that this expansion requires contact between DCs and the T cell. The Tregs sorted from in vitro culture suppressed the proliferation of splenocytes in vitro in a specific and non-specific manner. In the in vivo model, the transfer of CD4+ CD25- cells to Nude mice induced autoimmunity, with cell infiltrate found in the stomach, colon, liver and kidneys. The co-transfer of CD4+ CD25- and CD4+ CD25+ prevented the presence of cell infiltrates in several organs and increased the total cell count in lymph nodes. Our data indicate that apoptotic cells have an important role in peripheral tolerance via induction of tolerogenic DCs and CD4+ CD25+ Foxp3+ cells that present regulatory functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most important antigen-presenting cells of the immune system and have a crucial role in T-lymphocyte activation and adaptive immunity initiation. However, DCs have also been implicated in maintaining immunological tolerance. In this study, we evaluated changes in the CD4(+) CD25(+) Foxp3(+) T-cell population after co-culture of lymph node cells from BALB/c mice with syngeneic bone marrow-derived DCs. Our results showed an increase in CD4(+) CD25(+) Foxp3(+) T cells after co-culture which occurred regardless of the activation state of DCs and the presence of allogeneic apoptotic cells; however, it was greater when DCs were immature and were pulsed with the alloantigen. Interestingly, syngeneic apoptotic thymocytes were not as efficient as allogeneic apoptotic cells in expanding the CD4(+) CD25(+) Foxp3(+) T-cell population. In all experimental settings, DCs produced high amounts of transforming growth factor (TGF)-beta. The presence of allogeneic apoptotic cells induced interleukin (IL)-2 production in immature and mature DC cultures. This cytokine was also detected in the supernatants under all experimental conditions and enhanced when immature DCs were pulsed with the alloantigen. CD4(+) CD25(+) Foxp3(+) T-cell expansion during co-culture of lymph node cells with DCs strongly suggested that the presence of alloantigen enhanced the number of regulatory T cells (Tregs) in vitro. Our data also suggest a role for both TGF-beta and IL-2 in the augmentation of the CD4(+) CD25(+) Foxp3(+) population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although CD8+ T cells do not contribute to protection against the blood stage of Plasmodium infection, there is mounting evidence that they are principal mediators of murine experimental cerebral malaria (ECM). At present, there is no direct evidence that the CD8+ T cells mediating ECM are parasite-specific or, for that matter, whether parasite-specific CD8+ T cells are generated in response to blood-stage infection. To resolve this and to define the cellular requirements for such priming, we generated transgenic P. berghei parasites expressing model T cell epitopes. This approach was necessary as MHC class I-restricted antigens to blood-stage infection have not been defined. Here, we show that blood-stage infection leads to parasite-specific CD8+ and CD4+ T cell responses. Furthermore, we show that P. berghei-expressed antigens are cross-presented by the CD8α+ subset of dendritic cells (DC), and that this induces pathogen-specific cytotoxic T lymphocytes (CTL) capable of lysing cells presenting antigens expressed by blood-stage parasites. Finally, using three different experimental approaches, we provide evidence that CTL specific for parasite-expressed antigens contribute to ECM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms responsible for the immunosuppression associated with sepsis or some chronic blood infections remain poorly understood. Here we show that infection with a malaria parasite (Plasmodium berghei) or simple systemic exposure to bacterial or viral Toll-like receptor ligands inhibited cross-priming. Reduced cross-priming was a consequence of downregulation of cross-presentation by activated dendritic cells due to systemic activation that did not otherwise globally inhibit T cell proliferation. Although activated dendritic cells retained their capacity to present viral antigens via the endogenous major histocompatibility complex class I processing pathway, antiviral responses were greatly impaired in mice exposed to Toll-like receptor ligands. This is consistent with a key function for cross-presentation in antiviral immunity and helps explain the immunosuppressive effects of systemic infection. Moreover, inhibition of cross-presentation was overcome by injection of dendritic cells bearing antigen, which provides a new strategy for generating immunity during immunosuppressive blood infections.