960 resultados para periodontitis pathogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenesis of Mycobacterium tuberculosis is associated with its ability to survive inside the human host and the bacteria use a variety of mechanism to evade the host's defence. A clearer understanding of the host pathogen interaction is needed to follow the pathogenicity and virulence. Recent advances in the study of inter and intra-cellular communication in bacteria had prompted us to study the role of quorum sensing in bacterial survival and pathogenicity. The cell cell communication in bacteria (quorum sensing) is mediated through the exchange of small molecules called as autoinducers that allow bacteria to modulate their gene expression in response to change in cell-population density. It is a coordinated response that confers multicellularity to a bacterial population in response to stress from external environment. Quorum sensing molecules are the global regulators and regulate a wide range of physiological processes including biofilm formation, motility, cell differentiation, long-term survival and many others. Many bacterial pathogens require quorum sensing to produce the virulence factors in response to host pathogen interaction. Here, we summarize our current understanding on small molecule signalling and their role in the bacterial persistence. New discoveries in these areas have enriched our knowledge on intracellular signalling and their role in the long-term survival of mycobacteria under nutrient starvation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Areca nut consumption has been implicated in the progression of Oral Submucous fibrosis (OSF); an inflammatory precancerous fibrotic condition. Our previous studies have demonstrated the activation of TGF-beta signaling in epithelial cells by areca nut components and also propose a role for epithelial expressed TGF-beta in the pathogenesis of OSF. Although the importance of epithelial cells in the manifestation of OSF has been proposed, the actual effectors are fibroblast cells. However, the role of areca nut and TGF-beta in the context of fibroblast response has not been elucidated. Therefore, to understand their role in the context of fibroblast response in OSF pathogenesis, human gingival fibroblasts (hGF) were treated with areca nut and/or TGF-beta followed by transcriptome profiling. The gene expression profile obtained was compared with the previously published transcriptome profiles of OSF tissues and areca nut treated epithelial cells. The analysis revealed regulation of 4666 and 1214 genes by areca nut and TGF-beta treatment respectively. The expression of 413 genes in hGF cells was potentiated by areca nut and TGF-beta together. Further, the differentially expressed genes of OSF tissues compared to normal tissues overlapped significantly with areca nut and TGF-beta induced genes in epithelial and hGF cells. Several positively enriched pathways were found to be common between OSF tissues and areca nut + TGF-beta treated hGF cells. In concordance, areca nut along with TGF-beta enhanced fibroblast activation as demonstrated by potentiation of alpha SMA, gamma SMA and collagen gel contraction by hGF cells. Furthermore, TGF-beta secreted by areca nut treated epithelial cells influenced fibroblast activation and other genes implicated in fibrosis. These data establish a role for areca nut influenced epithelial cells in OSF progression by activation of fibroblasts and emphasizes the importance of epithelial-mesenchymal interaction in OSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arginine is an integral part of host defense when invading pathogens are encountered. The arginine metabolite nitric oxide (NO) confers antimicrobial properties, whereas the metabolite ornithine is utilized for polyamine synthesis. Polyamines are crucial to tissue repair and anti-inflammatory responses. iNOS/arginase balance can determine Th1/Th2 response. Furthermore, the host arginine pool and its metabolites are utilized as energy sources by various pathogens. Apart from its role as an immune modulator, recent studies have also highlighted the therapeutic effects of arginine. This article sheds light upon the roles of arginine metabolism during pathological conditions and its therapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenicity of Aeromonas hydrophila bacteria was tested on the stinging catfish Heteropneustes fossilis. Before artificial infection the morphological, biochemical and physiological characters of Aeromonas hydrophila were studied. The infections were done by two different methods, viz., intramuscular (IM) and intraperitoneal (IP) injection. In infection experiment, each group of 10 fish were injected either intramuscularly or intra peritoneally with one dose higher than the LD50 dose (9.6 x 107 CFU/fish). All the fish tested died within 1 to 9 days. Both in cases of intramuscular and intraperitoneal injection, external pathology were found. Haemorrhagic lesions were evident at the site of injection. The posterior end of the body surface was found to develop greyish-white lesion that was extended up to caudal fin. Hyperemic anal region and the fin bases were also observed. Total bacterial loads in liver, kidney and intestine were determined. Aeromonas hydrophila could be isolated from liver, kidney and intestine of the experimentally infected fish. In case of intramuscular injection the highest and the lowest bacterial load was found to be 2.4 x 107 CFU/g of liver and 2.1 x 102 CFU/g of kidney and in case of intraperitoneal injection they were found to be 3.6 x 106 CFU/g of kidney and 1.2 x 104 CFU/g of kidney respectively. It was concluded that A. hydrophila could cause serious disease condition to Heteropneustes fossilis and its pathogenesis in the fish was also very efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crohn’s disease (CD) is a chronic, relapsing inflammatory condition affecting the gastrointestinal tract of humans, of which there is currently no cure. The precise etiology of CD is unknown, although it has become widely accepted that it is a multifactorial disease which occurs as a result of an abnormal immune response to commensal enteric bacteria in a genetically susceptible host. Recent studies have shown that a new group of Escherichia coli, called Adherent Invasive Escherichia coli (AIEC) are present in the guts of CD patients at a higher frequency than in healthy subjects, suggesting that they may play a role in the initiation and/or maintenance of the inflammation associated with CD. Two phenotypes define an AIEC and differentiate them from other groups of E. coli. Firstly, AIEC can adhere to and invade epithelial cells; and secondly, they can replicate in macrophages. In this study, we use a strain of AIEC which has been isolated from the colonic mucosa of a CD patient, called HM605, to examine the relationship between AIEC and the macrophage. We show, using a systematic mutational approach, that while the Tricarboxylic acid (TCA) cycle, the glyoxylate pathway, the Entner-Doudoroff (ED) pathway, the Pentose Phosphate (PP) pathway and gluconeogenesis are dispensable for the intramacrophagic growth of HM605, glycolysis is an absolute requirement for the ability of this organism to replicate intracellularly. We also show that HM605 activates the inflammasome, a major driver of inflammation in mammals. Specifically, we show that macrophages infected with HM605 produce significantly higher levels of the pro-inflammatory cytokine IL-1β than macrophages infected with a non-AIEC strain, and we show by immunoblotting that this is due to cleavage of caspase-1. We also show that macrophages infected with HM605 exhibit significantly higher levels of pyroptosis, a form of inflammatory cell death, than macrophages infected with a non-AIEC strain. Therefore, AIEC strains are more pro-inflammatory than non-AIEC strains and this may have important consequences in terms of CD pathology. Moreover, we show that while inflammasome activation by HM605 is independent of intracellular bacterial replication, it is dependent on an active bacterial metabolism. Through the establishment of a genetic screen aimed at identifying mutants which activate the inflammasome to lower levels than the wild-type, we confirm our observation that bacterial metabolism is essential for successful inflammasome activation by HM605 and we also uncover new systems/structures that may be important for inflammasome activation, such as the BasS/BasR two-component system, a type VI secretion system and a K1 capsule. Finally, in this study, we also identify a putative small RNA in AIEC strain LF82, which may be involved in modulating the motility of this strain. Overall this works shows that, in the absence of specialised virulence factors, the ability of AIEC to metabolise within the host cell may be a key determinant of its pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, tuberculosis (TB) still remains one of the main global causes of mortality and morbidity, and an effective vaccine against both TB disease and Mycobacterium tuberculosis infection is essential to reach the updated post-2015 Millennium development goal of eradicating TB by 2050. During the last two decades much knowledge has accumulated on the pathogenesis of TB and the immune responses to infection by M. tuberculosis. Furthermore, many vaccine candidates are under development, and close to 20 of them have entered clinical assessment at various levels. Nevertheless, the M. tuberculosis-host interaction is very complex, and the full complexity of this interaction is still not sufficiently well understood to develop novel, rationally designed vaccines. However, some of the recent knowledge is now integrated into the design of various types of vaccine candidates to be used either as pre-exposure, as post-exposure or as therapeutic vaccines, as will be discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that loss-of-function mutations in the cathepsin C gene (CTSC) result in Papillon Lefevre syndrome, an autosomal recessive condition characterized by palmoplantar keratosis and early,onset, severe periodontitis. Others have also reported CTSC mutations in patients with severe prepubertal periodontitis, but without any skin manifestations. The possible role of CTSC variants in more common types of non-mendelian, early-onset, severe periodontitis ("aggressive periodontitis") has not been investigated. In this study, we have investigated the role of CTSC in all three conditions. We demonstrate that PLS is genetically homogeneous and the mutation spectrum that includes three novel mutations (c.386T>A/p. V129E, c.935A>G/p.Q312R, and c.1235A>G/p.Y412C) in 21 PLS families (including eight from our previous study) provides an insight into structure-function relationships of CTSC. Our data also suggest that a complete loss-of-function appears to be necessary for the manifestation of the phenotype, making it unlikely that weak CTSC mutations are a cause of aggressive periodontitis. This was confirmed by analyses of the CTSC activity in 30 subjects with aggressive periodontitis and age-sex matched controls, which demonstrated that there was no significant difference between these two groups (1,728.7 +/- SD 576.8 mu moles/mg/min vs. 1,678.7 +/- SD 527.2 mu moles/mg/min, respectively, p = 0.73). CTSC mutations were detected in only one of two families with prepubertal periodontitis; these did not form a separate functional class with respect to those observed in classical PLS. The affected individuals in the other prepubertal periodontitis family not only lacked CTSC mutations, but in addition did not share the haplotypes at the CTSC locus. These data suggest that prepubertal periodontitis is a genetically heterogeneous disease that, in some families, just represents a partially penetrant PLS. (C) 2004 Wiley-Liss, Inc.