1000 resultados para parentage testing
Resumo:
The aim of this study was to assess and apply a microsatellite multiplex system for parentage determination in alpacas. An approach for parentage testing based on 10 microsatellites was evaluated in a population of 329 unrelated alpacas from different geographical zones in Peru. All microsatellite markers, which amplified in two multiplex reactions, were highly polymorphic with a mean of 14.5 alleles per locus (six to 28 alleles per locus) and an average expected heterozygosity (H-E) of 0.8185 (range of 0.698-0.946). The total parentage exclusion probability was 0.999456 for excluding a candidate parent from parentage of an arbitrary offspring, given only the genotype of the offspring, and 0.999991 for excluding a candidate parent from parentage of an arbitrary offspring, given the genotype of the offspring and the other parent. In a case test of parentage assignment, the microsatellite panel assigned 38 (from 45 cases) offspring parentage to 10 sires with LOD scores ranging from 2.19 x 10(+13) to 1.34 x 10(+15) and Delta values ranging from 2.80 x 10(+12) to 1.34 x 10(+15) with an estimated pedigree error rate of 15.5%. The performance of this multiplex panel of markers suggests that it will be useful in parentage testing of alpacas.
Resumo:
Validation of parentage and horse breed registries through DNA typing relies on estimates of random match probabilities with DNA profiles generated from multiple polymorphic loci. Of the twenty-seven microsatellite loci recommended by the International Society for Animal Genetics for parentage testing in Thoroughbred horses, eleven are located on five chromosomes. An important aspect in determining combined exclusion probabilities is the ascertainment of the genetic linkage status of syntenic markers, which may affect reliable use of the product rule in estimating random match probabilities. In principle, linked markers can be in gametic phase disequilibrium (GD). We aimed at determining the extent, by frequency and strength, of GD between the HTG4 and HMS3 multiallelic loci, syntenic on chromosome 9. We typed the qualified offspring (n (1) = 27; n (2) = 14) of two Quarter Bred stallions (registered by the Brazilian Association of Quarter Horse Breeders) and 121 unrelated horses from the same breed. In the 41 informative meioses analyzed, the frequency of recombination between the HTG4 and HMS3 loci was 0.27. Consistent with genetic map distances, this recombination rate does not fit to the theoretical distribution for independently segregated markers. We estimated sign-based D' coefficients as a measure of GD, and showed that the HTG4 and HMS3 loci are in significant, yet partial and weak, disequilibrium, with two allele pairs involved (HTG4*M/HMS3*P, D'(+) = 0.6274; and HTG4*K/HMS3*P, D'(-) = -0.6096). These results warn against the inadequate inclusion of genetically linked markers in the calculation of combined power of discrimination for Thoroughbred parentage validation.
Resumo:
DNA-based parentage determination accelerates genetic improvement in sheep by increasing pedigree accuracy. Single nucleotide polymorphism (SNP) markers can be used for determining parentage and to provide unique molecular identifiers for tracing sheep products to their source. However, the utility of a particular "parentage SNP" varies by breed depending on its minor allele frequency (MAF) and its sequence context. Our aims were to identify parentage SNPs with exceptional qualities for use in globally diverse breeds and to develop a subset for use in North American sheep. Starting with genotypes from 2,915 sheep and 74 breed groups provided by the International Sheep Genomics Consortium (ISGC), we analyzed 47,693 autosomal SNPs by multiple criteria and selected 163 with desirable properties for parentage testing. On average, each of the 163 SNPs was highly informative (MAF≥0.3) in 48±5 breed groups. Nearby polymorphisms that could otherwise confound genetic testing were identified by whole genome and Sanger sequencing of 166 sheep from 54 breed groups. A genetic test with 109 of the 163 parentage SNPs was developed for matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The scoring rates and accuracies for these 109 SNPs were greater than 99% in a panel of North American sheep. In a blinded set of 96 families (sire, dam, and non-identical twin lambs), each parent of every lamb was identified without using the other parent's genotype. In 74 ISGC breed groups, the median estimates for probability of a coincidental match between two animals (PI), and the fraction of potential adults excluded from parentage (PE) were 1.1×10(-39) and 0.999987, respectively, for the 109 SNPs combined. The availability of a well-characterized set of 163 parentage SNPs facilitates the development of high-throughput genetic technologies for implementing accurate and economical parentage testing and traceability in many of the world's sheep breeds.
Resumo:
The G M1-gangliosidosis is an autosomal recessive lysosomal storage disease caused by structural defects of the beta-galactosidase gene (GLB1) which lead to a severe phenotypical impairment in homozygous individuals, whereas heterozygous carriers remain clinically normal. Currently employed DNA parentage tests include the analysis of microsatellites, which also have a diagnostic predictive value. The aim of this study was to provide a reliable tool for genotyping the canine GLB1 which can be effectively integrated in parentage testing investigations. For this purpose the association between the GLB1 gene and the AHT K253 microsatellite was analyzed in 30 Alaskan huskies (11 GLB1+/+, 17 GLB1+/- and 2 GLB1-/- dogs). The 143 bp AHT K253 microsatellite allele was identified only in GLB1+/- and GLB1-/- animals and was in strong linkage disequilibrium with the causative mutation for G M1-gangliosidosis, a 19 bp duplication within exon 15 of the GLB1 gene. The results of the present study revealed a 100% concordance between the previous established genotypes and those obtained after the analysis of the AHT K253 microsatellite. Thus, the genotype of the AHT K253 microsatellite, which is routinely determined during dog parentage testing, has a high predictive value for the G M1-gangliosidosis carrier status.
Resumo:
Assigning probabilities to alleged relationships, given DNA profiles, requires, among other things, calculation of a likelihood ratio (LR). Such calculations usually assume independence of genes: this assumption is not appropriate when the tested individuals share recent ancestry due to population substructure. Adjusted LR formulae, incorporating the coancestry coefficient F(ST), are presented here for various two-person relationships, and the issue of mutations in parentage testing is also addressed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Levels of genetic relatedness within bat colonies are often unknown, and consequently the reasons for group formation and social organization are unclear. The Leisler's bat (Nyctalus leisleri), like most temperate bat species, forms nursery colonies in summer. We used microsatellite markers to examine identity and to attempt to estimate relatedness among females within a nursery colony, over 2 consecutive years, to ascertain whether females show kinship and natal philopatry, testing the hypothesis that this is the basis of colony formation. Parentage and relatedness of young born within a colony was assessed to investigate mating patterns via male reproductive skew and whether males achieve mating success within their natal colony. While there was evidence for female philopatry, levels of genetic relatedness within colonies were low. This suggests that kinship is not a major determinant in group formation, as roosts also comprise a large number of distant relatives or non-kin. Roost switching and gene flow are likely to be high. Both sexes reproduced in their first year, whereas males appear to be the more dispersive sex. We argue that the physical environment as well as information sharing provided by communal roosting are likely to be important factors for the formation of these large natal colonies in N. leisleri and possibly other lineages of bats. © 2012 The Author.
Resumo:
Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.
Resumo:
Process modeling can be regarded as the currently most popular form of conceptual modeling. Research evidence illustrates how process modeling is applied across the different information system life cycle phases for a range of different applications, such as configuration of Enterprise Systems, workflow management, or software development. However, a detailed discussion of critical factors of the quality of process models is still missing. This paper proposes a framework consisting of six quality factors, which is derived from a comprehensive literature review. It then presents in a case study, a utility provider, who had designed various business process models for the selection of an Enterprise System. The paper summarizes potential means of conducting a successful process modeling initiative and evaluates the described modeling approach within the Guidelines of Modeling (GoM) framework. An outlook shows the potential lessons learnt, and concludes with insights to the next phases of this study.