408 resultados para p38


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Previous studies have shown the influence of subchondral bone osteoblasts (SBOs) on phenotypical changes of articular cartilage chondrocytes (ACCs) during the development of osteoarthritis (OA). The molecular mechanisms involved during this process remain elusive, in particular, the signal transduction pathways. The aim of this study was to investigate the in vitro effects of OA SBOs on the phenotypical changes in normal ACCs and to unveil the potential involvement of MAPK signaling pathways during this process. Methods. Normal and arthritic cartilage and bone samples were collected for isolation of ACCs and SBOs. Direct and indirect coculture models were applied to study chondrocyte hypertrophy under the influence of OA SBOs. MAPKs in the regulation of the cell–cell interactions were monitored by phosphorylated antibodies and relevant inhibitors. Results. OA SBOs led to increased hypertrophic gene expression and matrix calcification in ACCs by means of both direct and indirect cell–cell interactions. In this study, we demonstrated for the first time that OA SBOs suppressed p38 phosphorylation and induced ERK-1/2 signal phosphorylation in cocultured ACCs. The ERK-1/2 pathway inhibitor PD98059 significantly attenuated the hypertrophic changes induced by conditioned medium from OA SBOs, and the p38 inhibitor SB203580 resulted in the up-regulation of hypertrophic genes in ACCs. Conclusion. The findings of this study suggest that the pathologic interaction of OA SBOs and ACCs is mediated via the activation of ERK-1/2 phosphorylation and deactivation of p38 phosphorylation, resulting in hypertrophic differentiation of ACCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-kappaB, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-kappaB in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1beta activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-kappaB signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of IkappaBalpha, the binding partner of NF-kappaB. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-kappaB luciferase construct, using both SB 203580 and dominant-negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription-polymerase chain reaction (RT-PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8-luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant-negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-kappaB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Methotrexate alone or in combination with other agents is the standard treatment for moderate-to-severe rheumatoid arthritis. As the biological agents are expensive, they are not usually used until methotrexate has failed to give a good response. Thus, there is scope for the development of cheaper drugs that can be used instead of methotrexate or in addition to methotrexate. Objectives/methods: Pamapimod is a p38α inhibitor being developed for use in the treatment of rheumatoid arthritis. The objective was to evaluate the recent clinical trials of pamapimod in subjects with rheumatoid arthritis. Results: There is no clear cut evidence that pamapimod alone or in the presence of methotrexate is efficacious in subjects with rheumatoid arthritis, but it does cause adverse effects. Conclusion: It is unlikely that pamapimod will be useful in the treatment of rheumatoid arthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The p38 mitogen-activated protein kinase (MAPK) signal transduction pathway is involved in a variety of inflammatory responses, including cytokine generation, cell differentiation proliferation and apoptosis. Here, we examined the effects of systemic p38 MAPK inhibition on cartilage cells and osteoarthritis (OA) disease progression by both in vitro and in vivo approaches. Methods p38 kinase activity was evaluated in normal and OA cartilage cells by measuring the amount of phosphorylated protein. To examine the function of p38 signaling pathway in vitro, normal chondrocytes were isolated and differentiated in the presence or absence of p38 inhibitor; SB203580 and analysed for chondrogenic phenotype. Effect of systemic p38 MAPK inhibition in normal and OA (induced by menisectomy) rats were analysed by treating animals with vehicle alone (DMS0) or p38 inhibitor (SB203580). Damage to the femur and tibial plateau was evaluated by modified Mankin score, histology and immunohistochemistry. Results Our in vitro studies have revealed that a down-regulation of chondrogenic and increase of hypertrophic gene expression occurs in the normal chondrocytes, when p38 is neutralized by a pharmacological inhibitor. We further observed that the basal levels of p38 phosphorylation were decreased in OA chondrocytes compared with normal chondrocytes. These findings together indicate the importance of this pathway in the regulation of cartilage physiology and its relevance to OA pathogenesis. At in vivo level, systematic administration of a specific p38 MAPK inhibitor, SB203580, continuously for over a month led to a significant loss of proteoglycan; aggrecan and cartilage thickness. On the other hand, SB203580 treated normal rats showed a significant increase in TUNEL positive cells, cartilage hypertrophy markers such as Type 10 collagen, Runt-related transcription factor and Matrix metalloproteinase-13 and substantially induced OA like phenotypic changes in the normal rats. In addition, menisectomy induced OA rat models that were treated with p38 inhibitor showed aggravation of cartilage damage. Conclusions In summary, this study has provided evidence that the component of the p38 MAPK pathway is important to maintain the cartilage health and its inhibition can lead to severe cartilage degenerative changes. The observations in this study highlight the possibility of using activators of the p38 pathway as an alternative approach in the treatment of OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrin-linked kinase (ILK) and p38MAPK are protein kinases that transduce extracellular signals regulating cell migration and actin cytoskeletal organization. ILK-dependent regulation of p38MAPK is critical for mammalian kidney development and in smooth muscle cell migration, however, specific p38 isoforms has not been previously examined in ILK-regulated responses. Signaling by ILK and p38MAPK is often dysregulated in bladder cancer, and here we report a strong positive correlation between protein levels of ILK and p38β, which is the predominant isoform found in bladder cancer cells, as well as in patient-matched normal bladder and tumor samples. Knockdown by RNA interference of either p38β or ILK disrupts serum-induced, Rac1-dependent migration and actin cytoskeletal organization in bladder cancer cells. Surprisingly, ILK knockdown causes the selective reduction in p38β cellular protein level, without inhibiting p38β messenger RNA (mRNA) expression. The loss of p38β protein in ILK-depleted cells is partially rescued by the 26S proteasomal inhibitor MG132. Using co-precipitation and bimolecular fluorescent complementation assays, we find that ILK selectively forms cytoplasmic complexes with p38β. In situ proximity ligation assays further demonstrate that serum-stimulated assembly of endogenous ILK–p38β complexes is sensitive to QLT-0267, a small molecule ILK kinase inhibitor. Finally, inhibition of ILK reduces the amplitude and period of serum-induced activation of heat shock protein 27 (Hsp27), a target of p38β implicated in actin cytoskeletal reorganization. Our work identifies Hsp27 as a novel target of ILK–p38β signaling complexes, playing a key role in bladder cancer cell migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in MAPK activities were examined in the corpus luteum (CL) during luteolysis and pregnancy, employing GnRH antagonist (Cetrorelix)-induced luteolysis, stages of CL, and hCG treatment to mimic early pregnancy as model systems in the bonnet monkey. We hypothesized that MAPKs could serve to phosphorylate critical phosphoproteins to regulate luteal function. Analysis of several indices for structural (caspase-3 activity and DNA fragmentation) and functional (progesterone and steroidogenic acute regulatory protein expression) changes in the CL revealed that the decreased luteal function observed during Cetrorelix treatment and late luteal phase was associated with increased caspase-3 activity and DNA fragmentation. As expected, human chorionic gonadotropin treatment dramatically increased luteal function, but the indices for structural changes were only partially attenuated. All three MAPKs appeared to be constitutively active in the mid-luteal-phase CL, and activities of ERK-1/2 and p38-MAPK (p38), but not Jun N-terminal kinase (JNK)-1/2, decreased significantly (P < 0.05) within 12 - 24 h after Cetrorelix treatment. During the late luteal phase, in contrast to decreased ERK-1/2 and p38 activities, JNK-1/2 activities increased significantly (P < 0.05). Although human chorionic gonadotropin treatment increased ERK-1/2 and p38 activities, it decreased JNK-1/2 activities. The activation status of p38 was correlated with the phosphorylation status of an upstream activator, MAPK kinase-3/6 and the expression of MAPK activated protein kinase-3, a downstream target. Intraluteal administration of p38 kinase inhibitor (SB203580), but not MAPK kinase-1/2 inhibitor (PD98059), decreased the luteal function. Together, these data suggest an important role for p38 in the regulation of CL function in primates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2 alpha and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of apoptosis signal regulating kinase 1 (ASK1)-p38 MAPK death signaling cascade is irn plicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream 1)38 MAPK in a time dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thiorcdoxin (Trxl), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase ji 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein ovariation netvvork analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mecliated TNF signaling through intrathecal administration of TNFneutralizing antibody prevented Trxl oxidation and downstream ASK1-p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1-p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states. (C) 2015 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) effective against HIV-1 and HSV-1 replication. The mechanism of its antiviral activity is not clear. Many believe that it is related to ribosome inactivation. Some RIPs and viral infectio

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oesophageal cancer is an aggressive malignancy which is resistant to conventional therapy and has a poor prognosis. A greater understanding of the underlying molecular biology of oesophageal cancer and the identification of novel targets is necessary for the future treatment of this disease. This thesis focuses specifically on the ill-defined and understudied p38δ mitogen-activated protein kinase (MAPK) and its function(s) in oesophageal squamous cell carcinoma (OESCC). In contrast to the three other p38 isoforms (p38α, -β and –γ which have to-date been relatively well-studied), p38δ MAPK signalling is poorly understood. Thus, this research elucidates some of the role(s) played by p38δ MAPK in cancer progression. This work outlines how loss of p38δ MAPK expression confers greater tumourigenicity in oesophageal cancer. Restoration of p38δ MAPK expression, however, has anti-proliferative and anti-migratory effects and decreases OESCC capacity for anchorageindependent growth. Using a novel application of an enzyme-substrate fusion approach, the effect of phosphorylated p38δ (p-p38δ) MAPK expression is also considered. The work goes onto describe the effect(s) of p38δ MAPK status on the chemosensitivity of OESCC to conventional cisplatin and 5-fluorouracil (CF) versus the effectiveness of doxorubicin, cisplatin and 5-fluorouracil (ACF). ACF treatment of p38δ MAPK-negative OESCC results in decreased proliferation, migration and recovery, and increased apoptosis when compared with CF treatment. This thesis examines the potential mechanisms by which p38δ MAPK expression is lost in OESCC and identifies epigenetic regulation as the probable cause of differential p38δ MAPK expression. Also analysed is the role p38δ MAPK and p-p38δ MAPK play in the cell cycle. In summary, this research identifies p38δ MAPK as a possible molecular target and a potential predictor of response to chemotherapy in OESCC patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal inflammation. This study investigated the mechanisms underlying the synergistic upregulation of preproET-1 gene expression in human mesangial cells after co-stimulation with thrombin and tumor necrosis factor alpha (TNFalpha). Whereas thrombin induced a moderate upregulation of preproET-1 mRNA, co-stimulation with TNFalpha resulted in a strong and protracted upregulation of this mRNA species. Thrombin+TNFalpha-induced upregulation of preproET-1 expression was found to require p38 mitogen-activated protein kinase and protein kinases C, whereas activation of extracellular signal-regulated kinase, c-Jun-N-terminal kinase, or intracellular Ca(2+) release were not required. Actinomycin D chase experiments suggested that enhanced stability of preproET-1 mRNA did not account for the increase in transcript levels. PreproET-1 promoter analysis demonstrated that the 5'-flanking region of preproET-1 encompassed positive regulatory elements engaged by thrombin. Negative modulation of thrombin-induced activation exerted by the distal 5' portion of preproET-1 promoter (-4.4 kbp to 204 bp) was overcome by co-stimulation with TNFalpha, providing a possible mechanism underlying the synergistic upregulation of preproET-1 expression by these two agonists. In conclusion, human mesangial cell expression of preproET-1 may be increased potently in the presence of two common proinflammatory mediators, thereby providing a potential mechanism for ET-1 production in inflammatory renal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.