300 resultados para operon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we construct a mathematical model for the genetic regulatory network of the lactose operon. This mathematical model contains transcription and translation of the lactose permease (LacY) and a reporter gene GFP. The probability of transcription of LacY is determined by 14 binding states out of all 50 possible binding states of the lactose operon based on the quasi-steady-state assumption for the binding reactions, while we calculate the probability of transcription for the reporter gene GFP based on 5 binding states out of 19 possible binding states because the binding site O2 is missing for this reporter gene. We have tested different mechanisms for the transport of thio-methylgalactoside (TMG) and the effect of different Hill coefficients on the simulated LacY expression levels. Using this mathematical model we have realized one of the experimental results with different LacY concentrations, which are induced by different concentrations of TMG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock promoters of mycobacteria are strong promoters that become rapidly upregulated during macrophage infection and thus serve as valuable candidates for expressing foreign antigens in recombinant BCG vaccine. In the present study, a new heat shock promoter controlling the expression of the groESL1 operon was identified and characterized. Mycobacterium tuberculosis groESL1 operon codes for the immunodominant 10 kDa (Rv3418c, GroES/Cpn10/Hsp10) and 60 kDa (Rv3417c, GroEL1/Cpn60.1/Hsp60) heat shock proteins. The basal promoter region was 115 bp, while enhanced activity was seen only with a 277-bp fragment. No promoter element was seen in the groES-groEL1 intergenic region. This operon codes for a bicistronic mRNA transcript as determined by reverse transcriptase-PCR and Northern blot analysis. Primer extension analysis identified two transcriptional start sites (TSSs) TSS1 (-236) and TSS2 (-171), out of which one (TSS2) was heat inducible. The groE promoter was more active than the groEL2 promoter in Mycobacterium smegmatis. Further, it was found to be differentially regulated under stress conditions, while the groEL2 promoter was constitutive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the current study was to investigate whether polymerase chain reaction amplification of 16S ribosomal (r)RNA and a putative hemolysin gene operon, hhdBA, can be used to monitor live pigs for the presence of Haemophilus parasuis and predict the virulence of the strains present. Nasal cavity swabs were taken from 30 live, healthy, 1- to 8-week-old pigs on a weekly cycle from a commercial Thai nursery pig herd. A total of 27 of these pigs (90%) tested positive for H. parasuis as early as week 1 of age. None of the H. parasuis-positive samples from healthy pigs was positive for the hhdBA genes. At the same pig nursery, swab samples from nasal cavity, tonsil, trachea, and lung, and exudate samples from pleural/peritoneal cavity were taken from 30 dead pigs displaying typical pathological lesions consistent with Glasser disease. Twenty-two of 140 samples (15.7%) taken from 30 diseased pigs yielded a positive result for H. parasuis. Samples from the exudate (27%) yielded the most positive results, followed by lung, tracheal swab, tonsil, and nasal swab, respectively. Out of 22 positive samples, 12 samples (54.5%) harbored hhdA and/or hhdB genes. Detection rates of hhdA were higher than hhdB. None of the H. parasuis-positive samples taken from nasal cavity of diseased pigs tested positive for hhdBA genes. More work is required to determine if the detection of hhdBA genes is useful for identifying the virulence potential of H. parasuis field isolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bgl operon of Escherichia coil is transcriptionally inactive in wild-type cells. DNA insertion sequences (IS) constitute a major class of spontaneous mutations that activate the cryptic bgl promoter. In an attempt to study the molecular mechanism of activation mediated by insertion sequences, transcription of the bgl promoter was carried out in vitro. Stimulation of transcription is observed when a plasmid containing an insertionally activated bgl promoter is used as a template in the absence of proteins other than RNA polymerase. Deletions that remove sequences upstream of the bgl promoter, and insertion of a 1.2 kb DNA fragment encoding resistance to kanamycin, activate the promoter. Point mutations within a region of dyad symmetry upstream of the promoter, which has the potential to extrude into a cruciform structure under torsional stress, also lead to activation, Introduction of a sequence with dyad symmetry, upstream of an activated bgl promoter carrying a deletion of upstream sequences, results in a fourfold reduction in transcription, These results suggest that the cryptic nature of the bgl promoter is because of the presence of DNA structural elements near the promoter that negatively affect transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilization of the aryl-beta-glucosides salicin or arbutin in most wild-type strains of E. coli is achieved by a single-step mutational activation of the bgl operon. Shigella sonnei, a branch of the diverse E. coli strain tree, requires two sequential mutational steps for achieving salicin utilization as the bglB gene, encoding the phospho-beta-glucosidase B, harbors an inactivating insertion. We show that in a natural isolate of S. sonnei, transcriptional activation of the gene SSO1595, encoding a phospho-beta-glucosidase, enables salicin utilization with the permease function being provided by the activated bgl operon. SSO1595 is absent in most commensal strains of E. coli, but is present in extra-intestinal pathogens as bgcA, a component of the bgc operon that enables beta-glucoside utilization at low temperature. Salicin utilization in an E. coli bglB laboratory strain also requires a two-step activation process leading to expression of BglF, the PTS-associated permease encoded by the bgl operon and AscB, the phospho-beta-glucosidase B encoded by the silent asc operon. BglF function is needed since AscF is unable to transport beta-glucosides as it lacks the IIA domain involved in phopho-relay. Activation of the asc operon in the Sal(+) mutant is by a promoter-up mutation and the activated operon is subject to induction. The pathway to achieve salicin utilization is therefore diverse in these two evolutionarily related organisms; however, both show cooperation between two silent genetic systems to achieve a new metabolic capability under selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that the bgl operon of Escherichia coli, encoding the functions necessary for the uptake and metabolism of aryl-beta-glucosides, is involved in the regulation of oligopeptide transport during stationary phase. Global analysis of intracellular proteins from Bgl-positive (Bgl(+)) and Bgl-negative (Bgl(-)) strains revealed that the operon exerts regulation on at least 12 downstream target genes. Of these, oppA, which encodes an oligopeptide transporter, was confirmed to be upregulated in the Bgl(+) strain. Loss of oppA function results in a partial loss of the growth advantage in stationary-phase (GASP) phenotype of Bgl(+) cells. The regulatory effect of the bgl operon on oppA expression is indirect and is mediated via gcvA, the activator of the glycine cleavage system, and gcvB, which regulates oppA at the posttranscriptional level. We show that BglG destabilizes the gcvA mRNA in vivo, leading to reduced expression of gcvA in the stationary phase. Deletion of gcvA results in the downregulation of gcvB and upregulation of oppA and can partially rescue the loss of the GASP phenotype seen in Delta bglG strains. A possible mechanism by which oppA confers a competitive advantage to Bgl(+) cells relative to Bgl(-) cells is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Promoter regions in the genomes of all domains of life show similar trends in several structural properties such as stability, bendability, curvature, etc. In current study we analysed the stability and bendability of various classes of promoter regions (based on the recent identification of different classes of transcription start sites) of Helicobacter pylori 26695 strain. It is found that primary TSS and operon-associated TSS promoters show significantly strong features in their promoter regions. DNA free-energy-based promoter prediction tool PromPredict was used to annotate promoters of different classes, and very high recall values (similar to 80%) are obtained for primary TSS. Orthologous genes from other strains of H. pylori show conservation of structural properties in promoter regions as well as coding regions. PromPredict annotates promoters of orthologous genes with very high recall and precision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxin-antitoxin (TA) systems are found on both bacterial plasmids and chromosomes, but in most cases their functional role is unclear. Gene knockouts often yield limited insights into functions of individual TA systems because of their redundancy. The well-characterized F-plasmid-based CcdAB TA system is important for F-plasmid maintenance. We have isolated several point mutants of the toxin CcdB that fail to bind to its cellular target, DNA gyrase, but retain binding to the antitoxin, CcdA. Expression of such mutants is shown to result in release of the WT toxin from a functional preexisting TA complex as well as derepression of the TA operon. One such inactive, active-site mutant of CcdB was used to demonstrate the contribution of CcdB to antibiotic persistence. Transient activation of WT CcdB either by coexpression of the mutant or by antibiotic/heat stress was shown to enhance the generation of drug-tolerant persisters in a process dependent on Lon protease and RecA. An F-plasmid containing a ccd locus can, therefore, function as a transmissible persistence factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chb operon of Escherichia coli is involved in the utilization of the beta-glucosides chitobiose and cellobiose. The function of chbG (ydjC), the sixth open reading frame of the operon that codes for an evolutionarily conserved protein is unknown. We show that chbG encodes a monodeacetylase that is essential for growth on the acetylated chitooligosaccharides chitobiose and chitotriose but is dispensable for growth on cellobiose and chitosan dimer, the deacetylated form of chitobiose. The predicted active site of the enzyme was validated by demonstrating loss of function upon substitution of its putative metal-binding residues that are conserved across the YdjC family of proteins. We show that activation of the chb promoter by the regulatory protein ChbR is dependent on ChbG, suggesting that deacetylation of chitobiose-6-P and chitotriose-6-P is necessary for their recognition by ChbR as inducers. Strains carrying mutations in chbR conferring the ability to grow on both cellobiose and chitobiose are independent of chbG function for induction, suggesting that gain of function mutations in ChbR allow it to recognize the acetylated form of the oligosaccharides. ChbR-independent expression of the permease and phospho-beta-glucosidase from a heterologous promoter did not support growth on both chitobiose and chitotriose in the absence of chbG, suggesting an additional role of chbG in the hydrolysis of chitooligosaccharides. The homologs of chbG in metazoans have been implicated in development and inflammatory diseases of the intestine, indicating that understanding the function of E. coli chbG has a broader significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Yersinia pseudotuberculosis chromosome contains a seven-gene polycistronic unit (the pmrF operon) whose products share extensive homologies with their pmrF counterparts in Salmonella enterica serovar Typhimurium (S. typhimurium), another Gram-negative bacterial enteropathogen. This gene cluster is essential for addition of 4-aminoarabinose to the lipid moiety of LPS, as demonstrated by MALDI-TOF mass spectrometry of lipid A from both wild-type and pmrF-mutated strains. As in S. typhimurium, 4-aminoarabinose substitution of lipid A contributes to in vitro resistance of Y. pseudotuberculosis to the antimicrobial peptide polymyxin B. Whereas pmrF expression in S. typhimurium is mediated by both the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems, it appears to be PmrA-PmrB-independent in Y. pseudotuberculosis, with the response regulator PhoP interacting directly with the pmrF operon promoter region. This result reveals that the ubiquitous PmrA-PmrB regulatory system controls different regulons in distinct bacterial species. In addition, pmrF inactivation in Y. pseudotuberculosis has no effect on bacterial virulence in the mouse, again in contrast to the situation in S. typhimurium. The marked differences in pmrF operon regulation in these two phylogenetically close bacterial species may be related to their dissimilar lifestyles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enteropathogenic Escherichia coli (EPEC) adheres in vivo and in vitro to epithelial cells. Two main adhesins, the bundle-forming pilus and intimin, encoded by the Up operon and eae, respectively, are responsible for the localized and the intimate adherence phenotypes. Deletion of the pst operon of EPEC abolishes the transport of inorganic phosphate through the phosphate-specific transport system and causes the constitutive expression of the PHO regulon genes. In the absence of pst there is a decrease in the expression of the main EPEC adhesins and a reduction in bacterial adherence to epithelial cells in vitro. This effect is not related to PHO constitutivity, because a Delta pst phoB double mutant that is defective in the transcription of the PHO genes also displayed low levels of adherence and expression of adhesins. Likewise, a PHO-constitutive phoR mutation did not affect bacterial adherence. The expression of the per operon, which encodes the Up and ler regulators PerA and PerC, is also negatively affected by the pst deletion. Overall, the data presented here demonstrate that the pst operon of EPEC plays a positive role in the bacterial adherence mechanism by increasing the expression of perA and perC and consequently the transcription of bfp and eae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the gamma-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pst operon of Escherichia coli is composed of five genes that encode a high-affinity phosphate transport system. pst belongs to the PHO regulon, which is a group of genes and operons that are induced in response to phosphate limitation. The pst operon also has a regulatory role in the repression of PHO genes` transcription under phosphate excess conditions. Transcription of pst is initiated at the promoter located upstream to the first gene, pstS. Immediately after its synthesis, the primary transcript of pst is cleaved into shorter mRNA molecules in a ribonuclease E-dependent manner. Other ribonucleases, such as RNase III and MazF, do not play a role in pst mRNA processing. RNase E is thus at least partially responsible for processing the pst primary transcript.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pst operon of Escherichia coli is composed of five genes pstS, pstC, pstA, pstB and phoU, that encode a high-affinity phosphate transport system and a negative regulator of the PHO regulon. Transcription of pst is induced under phosphate shortage and is initiated at the promoter located upstream of the first gene of the operon, pstS. Here, we show by four different technical approaches the existence of additional internal promoters upstream of pstC, pstB and phoU. These promoters are not induced by Pi-limitation and do not possess PHO-box sequences. Plasmids carrying the pst internal genes partially complement chromosomal mutations in their corresponding genes, indicating that they are translated into functional proteins.