933 resultados para neutrophils


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Distinct populations of neutrophils have been identified based on the expression of intercellular adhesion molecule 1 (ICAM1, CD54) and chemokine receptor 1 (CXCR1, interleukin 8 receptor α). AIM We analyzed the expression of vascular endothelial growth factor receptor 1 (VEGFR1), a physiological negative regulator of angiogenesis, on distinct populations of neutrophils from the blood of patients before and after adjuvant chemotherapy for breast cancer. MATERIALS AND METHODS Neutrophil populations were distinguished as reverse transmigrated (ICAM1(high)/CXCR1(low)), naïve (ICAM1(low)/CXCR1(high)), or tissue-resident neutrophils (ICAM1(low)/CXCR1(low)), and their VEGFR1 expression quantified. RESULTS Reverse transmigrated ICAM1(high)/CXCR1(low) neutrophilic granulocytes decreased significantly after chemotherapy and these were also the cells with highest mean fluorescence intensity for VEGFR1. CONCLUSION Chemotherapy mainly reduces the number of reverse transmigrated long-lived ICAM1(high)/CXCR1(low) VEGFR1-expressing neutrophils. The decrease of antiangiogenic VEGFR1 may have a potential impact on tumour angiogenesis in patients undergoing adjuvant chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In acute neuroinflammatory states such as meningitis, neutrophils cross the blood-brain barrier (BBB) and contribute to pathological alterations of cerebral function. The mechanisms that govern neutrophil migration across the BBB are ill defined. Using live-cell imaging, we show that LPS-stimulated BBB endothelium supports neutrophil arrest, crawling, and diapedesis under physiological flow in vitro. Investigating the interactions of neutrophils from wild-type, CD11a(-/-), CD11b(-/-), and CD18(null) mice with wild-type, junctional adhesion molecule-A(-/-), ICAM-1(null), ICAM-2(-/-), or ICAM-1(null)/ICAM-2(-/-) primary mouse brain microvascular endothelial cells, we demonstrate that neutrophil arrest, polarization, and crawling required G-protein-coupled receptor-dependent activation of β2 integrins and binding to endothelial ICAM-1. LFA-1 was the prevailing ligand for endothelial ICAM-1 in mediating neutrophil shear resistant arrest, whereas Mac-1 was dominant over LFA-1 in mediating neutrophil polarization on the BBB in vitro. Neutrophil crawling was mediated by endothelial ICAM-1 and ICAM-2 and neutrophil LFA-1 and Mac-1. In the absence of crawling, few neutrophils maintained adhesive interactions with the BBB endothelium by remaining either stationary on endothelial junctions or displaying transient adhesive interactions characterized by a fast displacement on the endothelium along the direction of flow. Diapedesis of stationary neutrophils was unchanged by the lack of endothelial ICAM-1 and ICAM-2 and occurred exclusively via the paracellular pathway. Crawling neutrophils, although preferentially crossing the BBB through the endothelial junctions, could additionally breach the BBB via the transcellular route. Thus, β2 integrin-mediated neutrophil crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed BBB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Listeria monocytogenes rhombencephalitis is a severe progressive disease despite a swift intrathecal immune response. Based on previous observations, we hypothesized that the disease progresses by intra-axonal spread within the central nervous system. To test this hypothesis, neuroanatomical mapping of lesions, immunofluorescence analysis, and electron microscopy were performed on brains of ruminants with naturally occurring rhombencephalitis. In addition, infection assays were performed in bovine brain cell cultures. Mapping of lesions revealed a consistent pattern with a preferential affection of certain nuclear areas and white matter tracts, indicating that Listeria monocytogenes spreads intra-axonally within the brain along interneuronal connections. These results were supported by immunofluorescence and ultrastructural data localizing Listeria monocytogenes inside axons and dendrites associated with networks of fibrillary structures consistent with actin tails. In vitro infection assays confirmed that bacteria were moving within axon-like processes by employing their actin tail machinery. Remarkably, in vivo, neutrophils invaded the axonal space and the axon itself, apparently by moving between split myelin lamellae of intact myelin sheaths. This intra-axonal invasion of neutrophils was associated with various stages of axonal degeneration and bacterial phagocytosis. Paradoxically, the ensuing adaxonal microabscesses appeared to provide new bacterial replication sites, thus supporting further bacterial spread. In conclusion, intra-axonal bacterial migration and possibly also the innate immune response play an important role in the intracerebral spread of the agent and hence the progression of listeric rhombencephalitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The immune contexture predicts prognosis in human colorectal cancer (CRC). Whereas tumour-infiltrating CD8+ T cells and myeloid CD16+ myeloperoxidase (MPO)+ cells are associated with favourable clinical outcome, interleukin (IL)-17-producing cells have been reported to correlate with severe prognosis. However, their phenotypes and functions continue to be debated. OBJECTIVE To investigate clinical relevance, phenotypes and functional features of CRC-infiltrating, IL-17-producing cells. METHODS IL-17 staining was performed by immunohistochemistry on a tissue microarray including 1148 CRCs. Phenotypes of IL-17-producing cells were evaluated by flow cytometry on cell suspensions obtained by enzymatic digestion of clinical specimens. Functions of CRC-isolated, IL-17-producing cells were assessed by in vitro and in vivo experiments. RESULTS IL-17+ infiltrates were not themselves predictive of an unfavourable clinical outcome, but correlated with infiltration by CD8+ T cells and CD16+ MPO+ neutrophils. Ex vivo analysis showed that tumour-infiltrating IL-17+ cells mostly consist of CD4+ T helper 17 (Th17) cells with multifaceted properties. Indeed, owing to IL-17 secretion, CRC-derived Th17 triggered the release of protumorigenic factors by tumour and tumour-associated stroma. However, on the other hand, they favoured recruitment of beneficial neutrophils through IL-8 secretion and, most importantly, they drove highly cytotoxic CCR5+CCR6+CD8+ T cells into tumour tissue, through CCL5 and CCL20 release. Consistent with these findings, the presence of intraepithelial, but not of stromal Th17 cells, positively correlated with improved survival. CONCLUSIONS Our study shows the dual role played by tumour-infiltrating Th17 in CRC, thus advising caution when developing new IL-17/Th17 targeted treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4, whereas inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of neutrophil extracellular traps (NETs) in innate immunity is well established but the molecular mechanisms responsible for their formation are still a matter of scientific dispute. Here, we aim to characterize a possible role of the receptor-interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) signaling pathway, which are known to cause necroptosis, in NET formation. Using genetic and pharmacological approaches, we investigated whether this programmed form of necrosis is a prerequisite for NET formation. NETs have been defined as extracellular DNA scaffolds associated with the neutrophil granule protein elastase that are capable of killing bacteria. Neither Ripk3-deficient mouse neutrophils nor human neutrophils in which MLKL had been pharmacologically inactivated, exhibited abnormalities in NET formation upon physiological activation or exposure to low concentrations of PMA. These data indicate that NET formation occurs independently of both RIPK3 and MLKL signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Granulocytes are central players of the immune system and, once activated, a tightly controlled balance between effector functions and cell removal by apoptosis guarantees maximal host benefit with least possible collateral damage to healthy tissue. Granulocytes are end-differentiated cells that cannot be maintained in culture for prolonged times. Isolating primary granulocytes is inefficient and challenging when working with mice, and especially so for the lowly abundant eosinophil and basophils subtypes. Here we describe an in vitro protocol to massively expand mouse derived myeloid progenitors and to differentiate them ‘on demand’ and in large numbers into mature neutrophils or basophils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE OF REVIEW Neutrophil extravasation from the blood into tissues is initiated by tethering and rolling of neutrophils on endothelial cells, followed by neutrophil integrin activation and shear resistant arrest, crawling, diapedesis and breaching the endothelial basement membrane harbouring pericytes. Endothelial intercellular cell adhesion molecule (ICAM)-1 and ICAM-2, in conjunction with ICAM-1 on pericytes, critically contribute to each step. In addition, epithelial ICAM-1 is involved in neutrophil migration to peri-epithelial sites. The most recent findings on the role of ICAM-1 and ICAM-2 for neutrophil migration into tissues will be reviewed here. RECENT FINDINGS Signalling via endothelial ICAM-1 and ICAM-2 contributes to stiffness of the endothelial cells at sites of chronic inflammation and junctional maturation, respectively. Endothelial ICAM-2 contributes to neutrophil crawling and initiation of paracellular diapedesis, which then proceeds independent of ICAM-2. Substantial transcellular neutrophil diapedesis across the blood-brain barrier is strictly dependent on endothelial ICAM-1 and ICAM-2. Endothelial ICAM-1 or ICAM-2 is involved in neutrophil-mediated plasma leakage. ICAM-1 on pericytes assists the final step of neutrophil extravasation. Epithelial ICAM-1 rather indirectly promotes neutrophil migration to peri-epithelial sites. SUMMARY ICAM-1 and ICAM-2 are involved in each step of neutrophil extravasation, and have redundant but also distinct functions. Analysis of the role of endothelial ICAM-1 requires simultaneous consideration of ICAM-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophils are essential to combat infectious agents but contribute to collateral inflammatory damage. Likewise, neutrophils can kill cancer cells and have been shown to promote malignant growth and metastasis through immunosuppressive functions. Two articles in a recent issue of Nature reveal new mechanisms by which tumors induce changes in neutrophil phenotype through production of inflammatory cytokines. Although the two studies report different outcomes on the effects of neutrophils on tumor growth and metastasis, they delineate novel molecular pathways influencing neutrophil phenotype that may provide new approaches to harnessing neutrophil functions in the treatment of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophil granules contain serine proteases that are central components of the antimicrobial weapons of the innate immune system. Neutrophil proteases also contribute to the amplification and resolution of inflammatory responses through defined proteolytic cleavage of mediators, cell surface receptors, and extracellular matrix proteins. In the blood and at mucosal surfaces, neutrophil serine proteases are regulated by serpins found in plasma and by non-serpin secreted inhibitors. Distinct mechanisms leading to neutrophil cell death have been described for the granule serine proteases, neutrophil elastase, cathepsin G, and proteinase-3. Granule leakage in neutrophils triggers death pathways mediated by cathepsin G and proteinase-3, and both proteases are tightly regulated by their inhibitor SERPINB1 in a cell intrinsic manner. Although stored in the same types of granules, neutrophil elastase does not significantly contribute to cell death following intracellular release from granules into the cytoplasm. However, heterozygous mutations in ELANE, the gene encoding elastase, are the cause of severe congenital neutropenia, a life-threatening condition characterized by the death of neutrophils at an early precursor stage in the bone marrow. This chapter focuses on recent work exploring the biology of clade B intracellular serpins that inhibit neutrophil serine proteases and their functions in neutrophil homeostasis and serine protease control at sites of inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor p21(CIP1). Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 expression may contribute to the differentiation block seen in this disease. We first quantified RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34(+) progenitor cells and mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA levels in AML blasts and CD34(+) progenitor cells as compared to mature neutrophils from healthy donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). In addition, neutrophil differentiation of CD34(+) cells in vitro with G-CSF (granulocyte colony stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in neutrophil differentiation, we generated two independent NB4RBM38 as well as DND1 knockdown cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and resulted in decreased p21(CIP1) mRNA expression. Our results clearly indicate that expression of the RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil differentiation is dependent on increased expression of both proteins, and that these proteins have a critical role in regulating p21(CIP1) expression during APL differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods: In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/− ) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results: In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion: ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione oxidants such as tertiary butyl hydroperoxide were shown previously to prevent microtubule assembly and cause breakdown of preassembled cytoplasmic microtubules in human polymorphonuclear leukocytes. The objectives of the present study were to determine the temporal relationship between the attachment and ingestion of phagocytic particles and the assembly of microtubules, and simultaneously to quantify the levels of reduced glutathione and products of its oxidation as potential physiological regulators of assembly. Polymorphonuclear leukocytes from human peripheral blood were induced to phagocytize opsonized zymosan at 30 degrees C. Microtubule assembly was assessed in the electron microscope by direct counts of microtubules in thin sections through centrioles. Acid extracts were assayed for reduced glutathione (GSH) and oxidized glutathione (GSSG), by the sensitive enzymatic procedure of Tietze. Washed protein pellets were assayed for free sulfhydryl groups and for mixed protein disulfides with glutathione (protein-SSG) after borohydride splitting of the disulfide bond. Resting cells have few assembled microtubules. Phagocytosis induces a cycle of rapid assembly followed by disassembly. Assembly is initiated by particle contact and is maximal by 3 min of phagocytosis. Disassembly after 5-9 min of phagocytosis is preceded by a slow rise in GSSG and coincides with a rapid rise in protein-SSG. Protein-SSG also increases under conditions in which butyl hydroperoxide inhibits the assembly of microtubules that normally follows binding of concanavalin A to leukocyte cell surface receptors. No evidence for direct involvement of GSH in the induction of assembly was obtained. The formation of protein-SSG, however, emerges as a possible regulatory mechanism for the inhibition of microtubule assembly and induction of their disassembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid. Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, and both are known to affect membrane structure, researchers have proposed that estrogen acts as an antioxidant to provide a protective effect on the post-exercise muscle of women (Sandoval & Matt, 2002). As a result, it has been postulated that muscles in women incur less damage in response to an acute strenuous exercise as compared to men. PURPOSE: To determine if circulating estrogen concentrations are related to muscle damage, as measured by creatine kinase activity and to determine gender differences in creatine kinase as a marker of muscle damage in response to an acute heavy resistance exercise protocol. METHODS: 7 healthy, resistance-trained, eumenhorrheic women (23±3 y, 169±9.1 cm, 66.4±10.5 kg) and 8 healthy, resistance-trained men (25±5 y, 178±6.7 cm, 82.3±9.33 kg) volunteered to participate in the study. Subjects performed an Acute Resistance Exercise Test (ARET) consisting of 6 sets of 5 repetitions Smith machine squats at 90% of their previously determined 1-RM. Blood samples were taken pre-, mid-, post-, 1 hour post-, 6 hours post-, and 24 hours post-exercise. Samples were stored at -80ºC until analyzed. Serum creatine kinase was measured using an assay kit from Genzyme (Framingham, MA). Serum estradiol was measured by an ELISA from GenWay (San Diego, CA). Estradiol b-receptor presence on granulocytes was measured via flow cytometry using primary antibodies from Abcam (Cambridge, MA) and PeCy7 antibodies (secondary) from Santa Cruz (Santa Cruz, CA). RESULTS: No significant correlations between estrogen and CK response were found after an acute resistant exercise protocol. Moreover, no significant change in estradiol receptors were expressed on granulocytes after exercise. Creatine Kinase response, however, differed significantly between genders. Men had higher resting CK concentrations throughout all time points. Creatine Kinase response increased significantly after exercise in both men and women (p=0.008, F=9.798). Men had a significantly higher CK response at 24 hours post exercise than women. A significant condition/sex/time interaction was exhibited in CK response (p=0.02, F=4.547). Perceived general soreness presented a significant condition, sex interaction (p=0.01, F=9.532). DISCUSSION: Although no estradiol and CK response correlations were found in response to exercise, a significant difference in creatine kinase activity was present between men and women. This discrepancy of our results and findings in the literature may be due to the high variability between subjects in creatine kinase activity as well as estrogen concentrations. The lack of significance in change of estradiol receptor expression on granulocytes in response to exercise may be due to intracellular estradiol receptor staining and non-specific gating for granulocytes rather than additional staining for neutrophil markers. Because neutrophils are the initial cells present in the inflammatory response after strenuous exercise, staining for estrogen receptors on this cell type may allow for a better understanding of the effect of estrogen and its hypothesized protective effect against muscle damage. Furthermore, the mechanism of action may include estradiol receptor expression on the muscle fiber itself may play a role in the protective effects of estradiol rather than or in addition to expression on neutrophils. We have shown here that gender differences occur in CK activity as a marker of muscle damage in response to strenuous eccentric exercise, but may not be the result of estradiol concentration or estradiol receptor expression on granulocytes. Other variables should be examined in order to determine the mechanism involved in the difference in creatine kinase as a marker of muscle damage between men and women after heavy resistance exercise.