264 resultados para n sulfonate n,o carboxymethylchitosan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two sulfonated ionomers based on poly(triethylmethyl ammonium 2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) and containing mixtures of Li+ and quaternary ammonium cations are characterised. The first system contains Li+ and the methyltriethyl ammonium cation (Nnf>1222nf>) in a 1:9 molar ratio, and the 7Li NMR line widths showed that the Li+ ions are mobile in this system below the glass transition temperature (105°C) and are therefore decoupled from the polymer segmental motion. The conductivity in this system was measured as 10-5 Scm-1 at 130°C. A second PAMPS system containing Li+ and the dimethylbutylmethoxyethyl ammonium cation (Nnf>114(2O1)nf>) in a 2:8 molar ratio showed much lower conductivities despite a significantly lower Tnf>gnf> (60°C), possibly due to associations between the Li+ and the ether group on the ammonium cation, or between the latter cations and the sulfonate groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(2-acrylamido-2-methyl-1-propane-sulphonate) (PAMPS) ionomer containing both sodium and quaternary ammonium cations functionalised with an ether group, has been characterised in terms of its thermal properties, ionic conductivity and sodium ion dynamics. The ether oxygen was incorporated to reduce the Na+ association with the anionic sulfonate groups tethered to the polymer backbone, thereby promoting ion dissociation and ultimately enhancing the ionic conductivity. This functionalised ammonium cation led to a significant reduction in the ionomer Tg compared to an analogue system without an ether group, resulting in an increase in ionic conductivity of approximately four orders of magnitude. The sodium ion dynamics were probed by 23Na solid-state NMR, which allowed the signals from the dissociated (mobile) and bound Na+ cations to be distinguished. This demonstrates the utility of 23Na solid-state NMR as a probe of sodium dynamics in ionomer systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This journal is © The Royal Society of Chemistry. A novel self-adapting retarder itaconic acid/acrylamide/sodium styrene sulfonate (IA/AM/SSS, hereinafter referred to as PIAS) was synthesized by free-radical, aqueous-solution polymerization and characterized by FTIR and TG. The optimum reaction conditions of polymerization were obtained from orthogonal experiments (L33) and subsequent data analysis. According to the evaluation as a retarder, the PIAS made it possible to obtain both a long thickening time and a swift compressive strength development for cement slurry, and therefore the applicable range of bottom hole circulation temperatures to the cement slurry has been widened to 60-180°C. Moreover, the working mechanism of the self-adapting retarder PIAS was found to rely on the change of spatial structure of the molecules to retard the hydration of the cement. This paper also expounds that the delayed coagulation of the cement slurry is attributed to adsorption, chelation and "poisoning" effects of the PIAS molecules on the surface of hydrated particles or ions through XRD and SEM analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here a novel anti-biodegradable hydrophobic acrylamide copolymer that was prepared from acrylamide, acrylic acid, sodium 3-(allyloxy)-2-hydroxypropane-1-sulfonate and N-allyl-2-(2,4-dichlorophenoxy) acetamide using the 2,2'-azobis(2-methylpropionamide) dihydrochloride initiation system. Subsequently, the copolymer was characterized by FT-IR, 1H NMR, TG-DTG and water-solubility. And the biodegradability test indicated that the copolymer was not deemed to be readily biodegradable via a closed bottle test established by the Organization for Economic Co-operation and Development (OECD 301 D). Meanwhile the copolymer could significantly enhance the viscosity of the aqueous solution in comparison with partially hydrolyzed polyacrylamide. A viscosity retention of 51.9% indicated the result of a dramatic improvement of temperature tolerance. And then the excellent salt resistance, shear resistance, viscoelasticity, long-term stability of the copolymer could be obtained, which provides a good theoretical foundation for the application in enhanced oil recovery. In addition, this copolymer exerted stronger mobility control ability with a resistance factor of 22.1 and a residual resistance factor of 5.0, and superior ability for enhanced oil recovery of 12.9%. Hence, the copolymer has potential application for enhanced oil recovery in high-temperature and high-salinity reservoirs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid (NIMA), 3-(diallyl-amino)-2-hydroxypropyl sulfonate (NDS), acrylamide (AM) and acrylic acid (AA) were successfully utilized to prepare novel acrylamide-based copolymers (named AM/AA/NIMA and AM/AA/NDS/NIMA) which were functionalized by a combination of imidazoline derivative and/or sulfonate via redox free-radical polymerization. The two copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), viscosimetry, pyrene fluorescence probe, thermogravimetry (TG) and differential thermogravimetry (DTG). As expected, the polymers exhibited excellent thickening property, shear stability (viscosity retention rate 5.02% and 7.65% at 1000 s-1) and salt-tolerance (10:000 mg L-1 NaCl: viscosity retention rate up to 17.1% and 10.2%) in comparison with similar concentration partially hydrolyzed polyacrylamide (HPAM). The temperature resistance of the AM/AA/NDS/NIMA solution was also remarkably improved and the viscosity retention rate reached 54.8% under 110 °C. According to the core flooding tests, oil recovery could be enhanced by up to 15.46% by 2000 mg L-1 of the AM/AA/NDS/NIMA brine solution at 80 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel imidazoline-based sulfonate copolymers (noted PAMDSCM and PAMPSCM) were successfully prepared by copolymerization of acrylamide (AM), acrylic acid (AA), 1-acrylamido ethyl-2-oleic imidazoline (ACEIM) with the sodium salts of 3-(diallyl-amino)-2-hydroxypropyl (NDS) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS), respectively. The copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR) spectroscopy, pyrene fluorescence probe spectroscopy, viscosimetry and thermogravimetry (TG). Both PAMDSCM and PAMPSCM copolymers had excellent high-temperature tolerance in comparison with the same concentration of HPAM, and the residual viscosities were 32.0 mPa s and 31.3 mPa s (viscosity retention rates were 38.8% and 37.1%) at 140 °C, respectively. The copolymers possessed superior long-term thermal stability and their residual viscosity rates were up to 81.8% and 63.8% (52.9 mPa s and 47.1 mPa s) lasting 1.5 hours at 100 °C and 170 s-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantified postdepositional losses of methane sulfonate (MSA-), nitrate, and chloride at the European Project for Ice Coring in Antarctica (EPICA) drilling site in Dronning Maud Land (DML) (75°S, 0°E). Analyses of four intermediate deep firn cores and 13 snow pits were considered. We found that about 26 ± 13% of the once deposited nitrate and typically 51 ± 20% of MSA- were lost, while for chloride, no significant depletion could be observed in firn older than one year. Assuming a first order exponential decay rate, the characteristic e-folding time for MSA- is 6.4 ± 3 years and 19 ± 6 years for nitrate. It turns out that for nitrate and MSA- the typical mean concentrations representative for the last 100 years were reached after 5.4 and 6.5 years, respectively, indicating that beneath a depth of around 1.2-1.4 m postdepositional losses can be neglected. In the area of investigation, only MSA- concentrations and postdepositional losses showed a distinct dependence on snow accumulation rate. Consequently, MSA- concentrations archived at this site should be significantly dependent on the variability of annual snow accumulation, and we recommend a corresponding correction. With a simple approach, we estimated the partial pressure of the free acids MSA, HNO3, and HCl on the basis of Henry's law assuming that ionic impurities of the bulk ice matrix are localized in a quasi-brine layer (QBL). In contrast to measurements, this approach predicts a nearly complete loss of MSA-, NO3 - , and Cl-.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The guinea pig estrogen sulfotransferase gene has been cloned and compared to three other cloned steroid and phenol sulfotransferase genes (human estrogen sulfotransferase, human phenol sulfotransferase, and guinea pig 3 alpha-hydroxysteroid sulfotransferase). The four sulfotransferase genes demonstrate a common outstanding feature: the splice sites for their 3'-terminal exons are identically located. That is, the 3'-terminal exon splice sites involve a glycine that constitutes the N-terminal glycine of an invariably conserved GXXGXXK motif present in all steroid and phenol sulfotransferases for which primary structures are known. This consistency strongly suggests that all steroid and phenol sulfotransferase genes will be similarly spliced. The GXXGXXK motif forms the active binding site for the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate. Amino acid sequence alignment of 19 cloned steroid and phenol sulfotransferases starting with the GXXGXXK motif indicates that the 3'-terminal exon for each steroid and phenol sulfotransferase gene encodes a similarly sized C-terminal fragment of the protein. Interestingly, on further analysis of the alignment, three distinct amino acid sequence patterns emerge. The presence of the conserved functional GXXGXXK motif suggests that the protein domains encoded by steroid and phenol sulfotransferase 3'-terminal exons have evolved from a common ancestor. Furthermore, it is hypothesized that during the course of evolution, the 3'-terminal exon further diverged into at least three sulfotransferase subdivisions: a phenol or aryl group, an estrogen or phenolic steroid group, and a neutral steroid group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references (p. 69-71).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references (p. 72-75).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium paeoniflorin sulfonate 2 was isolated from processed, but not unprocessed, Paeonia lactiflora roots and characterized by mass spectrometry and NMR spectroscopy. A notable and characteristic downfield shift in the H-1 NMR was observed for the hydrogens to the alkoxysulfonate moiety in 2 and in other model compounds. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using RAFT polymerisation has been studied. Selected experimental conditions led to the production of PNSS with variable molecular weights and low dispersities (D{stroke}≤1.50). The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using reversible addition-fragmentation chain transfer polymerisation has been studied under a wide range of experimental conditions. PNSS can be used as an organic-soluble, thermally labile precursor for industrially valuable poly(p-styrene sulfonate), widely employed in technologies such as ionic exchange membranes and organic electronics. The suitability of two different chain transfer agents, three solvents, three different monomer concentrations and two different temperatures for the polymerisation of neopentyl p-styrene sulfonate is discussed in terms of the kinetics of the process and characteristics of the final polymer. Production of PNSS with systematically variable molecular weights and low dispersities (D{stroke} ≤1.50 in all cases) has been achieved using 2-azidoethyl 2-(dodecylthiocarbonothioylthio)-2-methylpropionate in anisole at 75°C, with an initial monomer concentration of 4.0molL-1. Finally, a poly(neopentyl p-styrene sulfonate)-b-polybutadiene-b-poly(neopentyl p-styrene sulfonate) (PNSS-b-PBD-b-PNSS) triblock copolymer has been synthesised via azide-alkyne click chemistry. Moreover, subsequent thermolysis of the PNSS moieties generated poly(p-styrene sulfonate) end blocks. This strategy allows the fabrication of amphiphilic copolymer films from single organic solvents without the need for post-deposition chemical treatment.