984 resultados para multi-label learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of patient outcomes is critical to plan resources in an hospital emergency department. We present a method to exploit longitudinal data from Electronic Medical Records (EMR), whilst exploiting multiple patient outcomes. We divide the EMR data into segments where each segment is a task, and all tasks are associated with multiple patient outcomes over a 3, 6 and 12 month period. We propose a model that learns a prediction function for each task-label pair, interacting through two subspaces: the first subspace is used to impose sharing across all tasks for a given label. The second subspace captures the task-specific variations and is shared across all the labels for a given task. The proposed model is formulated as an iterative optimization problems and solved using a scalable and efficient Block co-ordinate descent (BCD) method. We apply the proposed model on two hospital cohorts - Cancer and Acute Myocardial Infarction (AMI) patients collected over a two year period from a large hospital emergency department. We show that the predictive performance of our proposed models is significantly better than those of several state-of-the-art multi-task and multi-label learning methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an image to text translation platform consisting of image segmentation, region features extraction, region blobs clustering, and translation components. A multi-label learning method is suggested for realizing the translation component. Empirical studies show that the predictive performance of the translation component is better than its counterparts when employed a dual-random ensemble multi-label classification algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparative evaluation of popular multi-label classification methods on several multi-label problems from different domains. The methods include multi-label k-nearest neighbor, binary relevance, label power set, random k-label set ensemble learning, calibrated label ranking, hierarchy of multi-label classifiers and triple random ensemble multi-label classification algorithms. These multi-label learning algorithms are evaluated using several widely used MLC evaluation metrics. The evaluation results show that for each multi-label classification problem a particular MLC method can be recommended. The multi-label evaluation datasets used in this study are related to scene images, multimedia video frames, diagnostic medical report, email messages, emotional music data, biological genes and multi-structural proteins categorization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores effective multi-label classification methods for multi-semantic image and text categorization. We perform an experimental study of clustering based multi-label classification (CBMLC) for the target problem. Experimental evaluation is conducted for identifying the impact of different clustering algorithms and base classifiers on the predictive performance and efficiency of CBMLC. In the experimental setting, three widely used clustering algorithms and six popular multi-label classification algorithms are used and evaluated on multi-label image and text datasets. A multi-label classification evaluation metrics, micro F1-measure, is used for presenting predictive performances of the classifications. Experimental evaluation results reveal that clustering based multi-label learning algorithms are more effective compared to their non-clustering counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an empirical study of multi-label classification methods, and gives suggestions for multi-label classification that are effective for automatic image annotation applications. The study shows that triple random ensemble multi-label classification algorithm (TREMLC) outperforms among its counterparts, especially on scene image dataset. Multi-label k-nearest neighbor (ML-kNN) and binary relevance (BR) learning algorithms perform well on Corel image dataset. Based on the overall evaluation results, examples are given to show label prediction performance for the algorithms using selected image examples. This provides an indication of the suitability of different multi-label classification methods for automatic image annotation under different problem settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a triple-random ensemble learning method for handling multi-label classification problems. The proposed method integrates and develops the concepts of random subspace, bagging and random k-label sets ensemble learning methods to form an approach to classify multi-label data. It applies the random subspace method to feature space, label space as well as instance space. The devised subsets selection procedure is executed iteratively. Each multi-label classifier is trained using the randomly selected subsets. At the end of the iteration, optimal parameters are selected and the ensemble MLC classifiers are constructed. The proposed method is implemented and its performance compared against that of popular multi-label classification methods. The experimental results reveal that the proposed method outperforms the examined counterparts in most occasions when tested on six small to larger multi-label datasets from different domains. This demonstrates that the developed method possesses general applicability for various multi-label classification problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bayesian network classifiers are widely used in machine learning because they intuitively represent causal relations. Multi-label classification problems require each instance to be assigned a subset of a defined set of h labels. This problem is equivalent to finding a multi-valued decision function that predicts a vector of h binary classes. In this paper we obtain the decision boundaries of two widely used Bayesian network approaches for building multi-label classifiers: Multi-label Bayesian network classifiers built using the binary relevance method and Bayesian network chain classifiers. We extend our previous single-label results to multi-label chain classifiers, and we prove that, as expected, chain classifiers provide a more expressive model than the binary relevance method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of text classification techniques has been largely promoted in the past decade due to the increasing availability and widespread use of digital documents. Usually, the performance of text classification relies on the quality of categories and the accuracy of classifiers learned from samples. When training samples are unavailable or categories are unqualified, text classification performance would be degraded. In this paper, we propose an unsupervised multi-label text classification method to classify documents using a large set of categories stored in a world ontology. The approach has been promisingly evaluated by compared with typical text classification methods, using a real-world document collection and based on the ground truth encoded by human experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-task learning solves multiple related learning problems simultaneously by sharing some common structure for improved generalization performance of each task. We propose a novel approach to multi-task learning which captures task similarity through a shared basis vector set. The variability across tasks is captured through task specific basis vector set. We use sparse support vector machine (SVM) algorithm to select the basis vector sets for the tasks. The approach results in a sparse model where the prediction is done using very few examples. The effectiveness of our approach is demonstrated through experiments on synthetic and real multi-task datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes an algorithm for multi-label classification. Since a pattern can belong to more than one class, the task of classifying a test pattern is a challenging one. We propose a new algorithm to carry out multi-label classification which works for discrete data. We have implemented the algorithm and presented the results for different multi-label data sets. The results have been compared with the algorithm multi-label KNN or ML-KNN and found to give good results.