948 resultados para mobile networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mobile phone has, as a device, taken the world by storm in the past decade; from only 136 million phones globally in 1996, it is now estimated that by the end of 2008 roughly half of the worlds population will own a mobile phone. Over the years, the capabilities of the phones as well as the networks have increased tremendously, reaching the point where the devices are better called miniature computers rather than simply mobile phones. The mobile industry is currently undertaking several initiatives of developing new generations of mobile network technologies; technologies that to a large extent focus at offering ever-increasing data rates. This thesis seeks to answer the question of whether the future mobile networks in development and the future mobile services are in sync; taking a forward-looking timeframe of five to eight years into the future, will there be services that will need the high-performance new networks being planned? The question is seen to be especially pertinent in light of slower-than-expected takeoff of 3G data services. Current and future mobile services are analyzed from two viewpoints; first, looking at the gradual, evolutionary development of the services and second, through seeking to identify potential revolutionary new mobile services. With information on both current and future mobile networks as well as services, a network capability - service requirements mapping is performed to identify which services will work in which networks. Based on the analysis, it is far from certain whether the new mobile networks, especially those planned for deployment after HSPA, will be needed as soon as they are being currently roadmapped. The true service-based demand for the "beyond HSPA" technologies may be many years into the future - or, indeed, may never materialize thanks to the increasing deployment of local area wireless broadband technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pervasiveness of personal computing platforms offers an unprecedented opportunity to deploy large-scale services that are distributed over wide physical spaces. Two major challenges face the deployment of such services: the often resource-limited nature of these platforms, and the necessity of preserving the autonomy of the owner of these devices. These challenges preclude using centralized control and preclude considering services that are subject to performance guarantees. To that end, this thesis advances a number of new distributed resource management techniques that are shown to be effective in such settings, focusing on two application domains: distributed Field Monitoring Applications (FMAs), and Message Delivery Applications (MDAs). In the context of FMA, this thesis presents two techniques that are well-suited to the fairly limited storage and power resources of autonomously mobile sensor nodes. The first technique relies on amorphous placement of sensory data through the use of novel storage management and sample diffusion techniques. The second approach relies on an information-theoretic framework to optimize local resource management decisions. Both approaches are proactive in that they aim to provide nodes with a view of the monitored field that reflects the characteristics of queries over that field, enabling them to handle more queries locally, and thus reduce communication overheads. Then, this thesis recognizes node mobility as a resource to be leveraged, and in that respect proposes novel mobility coordination techniques for FMAs and MDAs. Assuming that node mobility is governed by a spatio-temporal schedule featuring some slack, this thesis presents novel algorithms of various computational complexities to orchestrate the use of this slack to improve the performance of supported applications. The findings in this thesis, which are supported by analysis and extensive simulations, highlight the importance of two general design principles for distributed systems. First, a-priori knowledge (e.g., about the target phenomena of FMAs and/or the workload of either FMAs or DMAs) could be used effectively for local resource management. Second, judicious leverage and coordination of node mobility could lead to significant performance gains for distributed applications deployed over resource-impoverished infrastructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative caching is used in mobile ad hoc networks to reduce the latency perceived by the mobile clients while retrieving data and to reduce the traffic load in the network. Caching also increases the availability of data due to server disconnections. The implementation of a cooperative caching technique essentially involves four major design considerations (i) cache placement and resolution, which decides where to place and how to locate the cached data (ii) Cache admission control which decides the data to be cached (iii) Cache replacement which makes the replacement decision when the cache is full and (iv) consistency maintenance, i.e. maintaining consistency between the data in server and cache. In this paper we propose an effective cache resolution technique, which reduces the number of messages flooded in to the network to find the requested data. The experimental results gives a promising result based on the metrics of studies.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a new fully distributed uplink power control method for CDMA systems. The power control algorithm calculates explicitly and assigns directly the desired mobile transmit powers achieving both maximum Carrier-to-Interference Ratio at the base station and minimum mobile energy consumption. Compared with the commonly known iterative power control algorithms, the direct assignment method is easier to implement and more power efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the current growth of mobile devices usage, mobile net- works struggle to deliver content with an acceptable Quality of Experience. In this paper, we propose the integration of Information Centric Networking into 3GPP Long Term Evolution mobile networks, allowing its inherent caching feature to be explored in close proximity to the end users by deploying components inside the evolved Node B. Apart from the advantages brought by Information-Centric Networking’s content requesting paradigm, its inherent caching features enable lower latencies to access content and reduce traffic at the core network. Results show that the impact on the evolved Node B performance is low and ad- vantages coming from Information-Centric Networking are considerable. Thus, mobile network operators reduce operational costs and users end up with a higher perceived network quality even in peak utilization periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile networks usage rapidly increased over the years, with great consequences in terms of performance requirements. In this paper, we propose mechanisms to use Information-Centric Networking to perform load balancing in mobile networks, providing content delivery over multiple radio technologies at the same time and thus efficiently using resources and improving the overall performance of content transfer. Meaningful results were obtained by comparing content transfer over single radio links with typical strategies to content transfer over multiple radio links with Information-Centric Networking load balancing. Results demonstrate that Information-Centric Networking load balancing increases the performance and efficiency of 3GPP Long Term Evolution mobile networks while greatly improving the network perceived quality for end users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With a boom in the usage of mobile devices for traffic-heavy applications, mobile networks struggle to deliver good performance while saving resources to support more users and save on costs. In this paper, we propose enhanced strategies for the preemptive migration of content stored in Information-Centric Networking caches at the edge of LTE mobile networks. With such strategies, the concept of content following the users interested in it becomes a reality and content within caches is more optimized towards the requests of nearby users. Results show that the strategies are feasible, efficient and, when compared to default caching strategies, ensure that content is delivered faster to end users while using bandwidth and storage resources more efficiently at the core of the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show a cluster based routing protocol in order to improve the convergence of the clusters and of the network it is proposed to use a backup cluster head. The use of a event discrete simulator is used for the implementation and the simulation of a hierarchical routing protocol called the Backup Cluster Head Protocol (BCHP). Finally it is shown that the BCHP protocol improves the convergence and availability of the network through a comparative analysis with the Ad Hoc On Demand Distance Vector (AODV)[1] routing protocol and Cluster Based Routing Protocol (CBRP)[2]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the many state-of-the-art methods for cooperative localization in wireless sensor networks (WSN), only very few adapt well to mobile networks. The main problems of the well-known algorithms, based on nonparametric belief propagation (NBP), are the high communication cost and inefficient sampling techniques. Moreover, they either do not use smoothing or just apply it o ine. Therefore, in this article, we propose more flexible and effcient variants of NBP for cooperative localization in mobile networks. In particular, we provide: i) an optional 1-lag smoothing done almost in real-time, ii) a novel low-cost communication protocol based on package approximation and censoring, iii) higher robustness of the standard mixture importance sampling (MIS) technique, and iv) a higher amount of information in the importance densities by using the population Monte Carlo (PMC) approach, or an auxiliary variable. Through extensive simulations, we confirmed that all the proposed techniques outperform the standard NBP method.