994 resultados para microbiological monitoring


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bioremediation, which is the exploitation of the intrinsic ability of environmental microbes to degrade and remove harmful compounds from nature, is considered to be an environmentally sustainable and cost-effective means for environmental clean-up. However, a comprehensive understanding of the biodegradation potential of microbial communities and their response to decontamination measures is required for the effective management of bioremediation processes. In this thesis, the potential to use hydrocarbon-degradative genes as indicators of aerobic hydrocarbon biodegradation was investigated. Small-scale functional gene macro- and microarrays targeting aliphatic, monoaromatic and low molecular weight polyaromatic hydrocarbon biodegradation were developed in order to simultaneously monitor the biodegradation of mixtures of hydrocarbons. The validity of the array analysis in monitoring hydrocarbon biodegradation was evaluated in microcosm studies and field-scale bioremediation processes by comparing the hybridization signal intensities to hydrocarbon mineralization, real-time polymerase chain reaction (PCR), dot blot hybridization and both chemical and microbiological monitoring data. The results obtained by real-time PCR, dot blot hybridization and gene array analysis were in good agreement with hydrocarbon biodegradation in laboratory-scale microcosms. Mineralization of several hydrocarbons could be monitored simultaneously using gene array analysis. In the field-scale bioremediation processes, the detection and enumeration of hydrocarbon-degradative genes provided important additional information for process optimization and design. In creosote-contaminated groundwater, gene array analysis demonstrated that the aerobic biodegradation potential that was present at the site, but restrained under the oxygen-limited conditions, could be successfully stimulated with aeration and nutrient infiltration. During ex situ bioremediation of diesel oil- and lubrication oil-contaminated soil, the functional gene array analysis revealed inefficient hydrocarbon biodegradation, caused by poor aeration during composting. The functional gene array specifically detected upper and lower biodegradation pathways required for complete mineralization of hydrocarbons. Bacteria representing 1 % of the microbial community could be detected without prior PCR amplification. Molecular biological monitoring methods based on functional genes provide powerful tools for the development of more efficient remediation processes. The parallel detection of several functional genes using functional gene array analysis is an especially promising tool for monitoring the biodegradation of mixtures of hydrocarbons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008–2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microbiological monitoring of the water used for hemodialysis is extremely important, especially because of the debilitated immune system of patients suffering from chronic renal insufficiency. To investigate the occurrence and species diversity of bacteria in waters, water samples were collected monthly from a hemodialysis center in upstate São Paulo and tap water samples at the terminal sites of the distribution system was sampled repeatedly (22 times) at each of five points in the distribution system; a further 36 samples were taken from cannulae in 19 hemodialysis machines that were ready for the next patient, four samples from the reuse system and 13 from the water storage system. To identify bacteria, samples were filtered through 0.22 mu m-pore membranes; for mycobacteria, 0.45 mu m pores were used. Conventional microbiological and molecular methods were used in the analysis. Bacteria were isolated from the distribution system (128 isolates), kidney machine water (43) and reuse system (3). Among these isolates, 32 were Gram-positive rods, 120 Gram-negative rods, 20 Gram-positive cocci and 11 mycobacteria. We propose the continual monitoring of the water supplies in hemodialysis centers and the adoption of effective prophylactic measures that minimize the exposure of these immunodeficient patients to contaminated sources of water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As indústrias farmacêuticas que utilizam salas limpas, em seus processos produtivos, devem controlar ao máximo o nível de contaminantes microbiológicos, baseada na legislação RDC 210 que determina o cumprimento das diretrizes estabelecidas no Regulamento Técnico das Boas Práticas para a Fabricação de Medicamentos. Diante deste cenário, a proposta deste trabalho é avaliar o processo de fumigação com o reagente formaldeído, para a limpeza e desinfecção de salas limpas do Instituto de Tecnologia de Imunobiológicos Bio-Manguinhos. Então, foram desenvolvidas as seguintes etapas: diagnóstico com as indústrias farmacêuticas para traçar um perfil quanto ao uso da fumigação; quantificação de resíduos gerados; avaliação da exposição dos operadores ao formaldeído que é cancerígeno e acompanhamento dos resultados do monitoramento ambiental do ar e de superfícies, inicialmente na sala limpa do SEFBC, cuja atividade principal é a formulação de vacinas bacterianas e biofármacos, após a implantação do espaçamento da fumigação. Os resultados discutidos na presente dissertação mostraram, que a maior parte das indústrias farmacêuticas, não realiza a desinfecção por intermédio da fumigação e que o resíduo gerado neste processo é o mais crítico. E, sobretudo, o monitoramento microbiológico do ar e de superfícies da sala limpa do SEFBC, a partir da metodologia adotada de espaçamento da fumigação, comprovou que não é necessário o emprego deste processo de forma rotineira, para garantir os níveis exigidos de limpeza e desinfecção da respectiva área

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVO: Cuantificar Bacterias gram positivas, Bacterias gram negativas y Hongos mediante monitoreo microbiológico de aire, superficies y manos del personal asistencial en cinco entidades de salud del departamento del Meta en el año 2007. MÉTODOS: Estudio ejecutado en cinco entidades, donde se realizó el diagnostico microbiológico del entorno hospitalario, tomando muestras en cada área asistencial de: superficies horizontales antes y después de aplicar el protocolo de limpieza y desinfección de cada institución, manos de personal asistencial antes y después del lavado rutinario de manos y del aire de áreas críticas y no críticas. RESULTADOS: La IPS 3 presentó el Aire de Zona crítica con mayor contaminación bacteriana y la IPS 4 mayor contaminación fúngica. Hospitalización, Urgencias y Apoyo diagnostico evidenciaron las mayores concentraciones microbianas. Se encontraron diferencias estadísticamente significativas entre la carga microbiana antes respecto a después del lavado de manos (p<0,05) y antes y después de la aplicación del protocolo de limpieza y desinfección de superficies. CONCLUSIONES: Con el presente estudio fue posible demostrar que la capacitación, supervisión y monitorización de los procesos de lavado de manos y limpieza y desinfección de superficies pueden llegar a garantizar la reducción de la biomasa bacteriana y fúngica presente en las entidades de la salud.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To describe the epidemiological and microbiological characteristics and notification patterns of invasive meningococcal disease (IMD) in Victoria between 1990 and 1999.

Methods: Cases of IMD occurring between 1990 and 1995 identified in any of three databases were combined, matching where possible. Statistical modelling provided estimates of cases missing from all datasets. Notification sources for 1999 and 2000 cases were identified. Cases identified from notification and laboratory results provided the data to describe IMD epidemiology between 1990 and 1999.

Results: Between 1990 and 1995, 479 cases of IMD were identified. Three individual datasets each identified between 62 and 82% of cases and 47% of cases were identified in all three datasets. Statistical modelling estimated that between 37 and 83 additional cases were not identified by any dataset. Serogroup B and C strains caused 63 and 33% of culture-positive cases, respectively, with a substantial rise in serogroup C cases in 1999. Epidemiological characteristics remained relatively constant between 1990 and 1998, but an increase in patient age was seen in cases with serogroup C disease in 1999. In addition to three clonal strains seen elsewhere, an additional strain was identified that was unique to Victoria. Since January 1999, only 72% of notifications have come from treating doctors.

Conclusions: Meningococcal disease is of increasing public health significance in Victoria. Laboratory enhanced notification has improved case identification and detailed microbiological information has improved our understanding of the changing epidemiology of this disease. Collaboration with laboratories and other agencies, active investigation of putative cases and microbiological monitoring are important elements in supporting public health decisions about the control of IMD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm-3, 15 µg m-3, 804 cfu m-3 and 177 cfu m-3 for flood-affected houses (AFH), and 2.74 p cm-3, 15 µg m-3, 547 cfu m-3 and 167 cfu m-3 for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 µg m-2 for AFH and 1454 ± 678 µg m-2 for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project developed and assessed a standard operating procedure for monitoring microbiological aerosol levels and dispersal from Australian industrial composting facilities. Development occurred via seasonal monitoring of such operations with evaluation of optimal microbial indicator organisms, sampling and analysis logistics. The resultant procedure allows practical end-user assessment of compost-associated bioaerosol levels, and potential health risks to proximal residential populations encroaching on such composting facilities and on-site industrial operations personnel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic rhinosinusitis is one of the most common chronic respiratory tract diseases affecting up to 15% of the adult population in the Western world. It may be perpetuated by factors predisposing to sinus ostial obstruction together with inflammatory changes in the sinus mucosa. Chronic rhinosinusitis is associated with asthma, and it may represent the same disease process. Chronic rhinosinusitis with nasal polyposis (CRSwNP) and asthma share also the characteristic inflammatory features and histopathologic feature of airway remodelling. Remodelling is considered as a key event in the pathogenesis of asthma. It is controlled by a delicate balance between the matrix metalloproteinases (MMPs) and their regulators. The purpose of the present study was to evaluate the microbiological findings, inflammatory features and MMP and tissue inhibitor of metalloproteinases-1 (TIMP-1) expression in CRSwNP. The results were related to the patient history, exposure to moisture and clinical outcome in order to find out possible explanations for the etiology and chronicity of CRSwNP. Bacterial culture results were similar in patients and in controls and do not explain the chronic course of CRSwNP. The presence of fungi seems to be more common in CRSwNP than chronic rhinosinusitis in general, and they should be actively searched for using microbiological as well as histological methods. Typical outdoor fungal species were found in nasal lavage samples taken from controls in the autumn but not in the winter, reflecting environmental exposure. Exposure to moisture was reported by 46% of the CRSwNP patients, which is in accordance to the Finnish general population. Exposed patients did not differ significantly from non-exposed subjects with regards to microbiological findings, tissue eosinophilia and clinical outcome. Significantly elevated levels of collagenase-2 (MMP-8) and interleukin (IL)-8 but not tumour necrosis factor-α were found in CRSwNP patients. In particular, the activation of mesenchymal-type MMP-8 but not polymorphonuclear-type MMP-8 was associated with elevated IL-8 levels. IL-8 and MMP-8 may form an inductive cytokine-proteinase cascade in CRSwNP pathogenesis and provide a target for novel therapies and a diagnostic tool for monitoring CRSwNP treatment. The proteolytic spectrum is different in eosinophilic and non-eosinophilic CRSwNP with the up-regulation of MMP-8 and MMP-9 in non-eosinophilic CRSwNP, suggesting different pathophysiology in these subgroups. The lack of MMP up-regulation was associated with a poor prognostic factor and worse clinical outcome, representing a possible synergic anti-inflammatory function of MMP-8 and MMP-9 in CRSwNP. This study provides new information about possible immunologic mechanisms in the pathogenesis of CRSwNP. The recently discovered anti-inflammatory/ defensive properties of MMP-8 and MMP-9 in animal models are reported for the first time in a clinical setting in human inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study gamma radiation (3, 6 and 9 kGy) in combination with low temperature (-20°C) were applied to retain the quality and shelf-life of shrimp, Penaeus monodon for a longer period. The quality was assessed by monitoring microbiological changes (TBC, TMC, TYC, TCC and Salmonella count) in irradiated and non-irradiated (control) samples. Among microbiological indicators of spoilage, total bacterial count (TBC) values for irradiated shrimps were found to be 1875, 1625 and 1525 cfugˉ¹ of sample at 3, 6 and 9 kGy respectively after 90 days whereas for non-irradiated samples it was found 2475 cfugˉ¹ of sample. Total moulds count (TMC) value for non-irradiated samples after 90 days were found 425 cfugˉ¹ sample whereas that for irradiated shrimps at 3, 6 and 9 kGy were found to be 275, 250 and 200 cfugˉ¹ sample respectively. Total yeast count (TYC) value for non-irradiated samples after 90 days were found 4125 cfugˉ¹ sample whereas that for irradiated shrimps at 3, 6 and 9 kGy were found to be 2850, 2150 and 1725 cfugˉ¹ sample respectively. Total coliform count and Salmonella count showed that those were absent during 90 days storage period. From this study, it was clear that gamma radiation in combination with low temperature showed shelf-life extension (90 days) in each dose of radiation used but during the use of 9 kGy radiation, Penaeus monodon showed best quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zero-valent iron (Fe0)-based permeable reactive barriertreatment has been generating great interest for passivegroundwater remediation, yet few studies have paid particularattention to the microbial activity and characteristics withinand in the vicinity of the Fe0-barrier matrix. The presentstudy was undertaken to evaluate the microbial population andcommunity composition in the reducing zone of influence byFe0 corrosion in the barrier at the Oak Ridge Y-12 Plantsite. Both phospholipid fatty acids and DNA analyses were usedto determine the total microbial population and microbialfunctional groups, including sulfate-reducing bacteria,denitrifying bacteria, and methanogens, in groundwater andsoil/iron core samples. A diverse microbial community wasidentified in the strongly reducing Fe0 environment despitea relatively high pH condition within the Fe0 barrier (up topH 10). In comparison with those found in the backgroundsoil/groundwater samples, the enhanced microbial populationranged from 1 to 3 orders of magnitude and appeared to increase from upgradient of the barrier to downgradient soil. Inaddition, microbial community composition appeared to change overtime, and the bacterial types of microorganismsincreased consistently as the barrier aged. DNA analysisindicated the presence of sulfate-reducing and denitrifyingbacteria in the barrier and its surrounding soil. However, theactivity of methanogens was found to be relatively low,presumably as a result of the competition by sulfate/metal-reducing bacteria and denitrifying bacteria because of the unlimited availability of sulfate and nitrate in the site groundwater. Results of this study provide evidenceof a diverse microbial population within and in the vicinity ofthe iron barrier, although the important roles of microbial activity, either beneficially or detrimentally, on the longevityand enduring efficiency of the Fe0 barriers are yet to be evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accumulation of biogenic greenhouse gases (methane, carbon dioxide) in organic sediments is an important factor in the redevelopment and risk management of many brownfield sites. Good practice with brownfield site characterization requires the identification of free-gas phases and pathways that allow its migration and release at the ground surface. Gas pockets trapped in the subsurface have contrasting properties with the surrounding porous media that favor their detection using geophysical methods. We have developed a case study in which pockets of gas were intercepted with multilevel monitoring wells, and their lateral continuity was monitored over time using resistivity. We have developed a novel interpretation procedure based on Archie’s law to evaluate changes in water and gas content with respect to a mean background medium. We have used induced polarization data to account for errors in applying Archie’s law due to the contribution of surface conductivity effects. Mosaics defined by changes in water saturation allowed the recognition of gas migration and groundwater infiltration routes and the association of gas and groundwater fluxes. The inference on flux patterns was analyzed by taking into account pressure measurements in trapped gas reservoirs and by metagenomic analysis of the microbiological content, which was retrieved from suspended sediments in groundwater sampled in multilevel monitoring wells. A conceptual model combining physical and microbiological subsurface processes suggested that biogas trapped at depth may have the ability to quickly travel to the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality.