994 resultados para mhc gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proinflammatory cytokines, such as tumor necrosis factor (TNF)-{alpha}, contribute to muscle wasting in inflammatory disorders, where TNF{alpha} acts to regulate myogenic genes. Conjugated linoleic acid (CLA) has shown promise as an antiproliferative and antiinflammatory agent, leading to its potential as a therapeutic agent in muscle-wasting disorders. To evaluate the effect of CLA on myogenesis during inflammation, human primary muscle cells were grown in culture and exposed to varying concentrations of TNF{alpha} and the cis-9, trans-11 and trans-10, cis-12 CLA isomers. Expression of myogenic genes (Myf5, MyoD, myogenin, and myostatin) and the functional genes creatine kinase (CK) and myosin heavy chain (MHC IIx) were measured by real-time PCR. TNF{alpha} significantly downregulated MyoD and myogenin expression, whereas it increased Myf5 expression. These changes corresponded with a decrease in both CK and MHC IIx expression. Both isomers of CLA mimicked the inhibitory effect of TNF{alpha} treatment on MyoD and myogenin expression, whereas myostatin expression was diminished in the presence of both isomers of CLA either alone or in combination with TNF{alpha}. Both isomers of CLA decreased CK and MHC IIx expression. These findings demonstrate that TNF{alpha} can have specific regulatory effects on myogenic genes in primary human muscle cells. A postulated antiinflammatory role of CLA in myogenesis appears more complex, with an indication that CLA may have a negative effect on this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O MHC (Major Histocompatibility Complex) é um sistema genético importante para a manutenção de espécies ameaçadas, uma vez que baixa variabilidade para locos MHC tem sido associada a uma menor capacidade de resposta a doenças e diminuição do sucesso reprodutivo. Deste modo, pesquisas sobre a variabilidade genética do MHC têm demonstrado ser bastante informativas em estudos populacionais voltados para aspectos referentes à conservação. No presente trabalho foi investigada a variabilidade genética do MHC para três espécies de mamíferos marinhos (toninha, baleia franca austral e lobo marinho sul-americano) do sul do Brasil, com intensa mortalidade provocada por atividades humanas atuais ou passadas. As amostras foram coletadas de animais mortos encalhados na costa, de animais capturados acidentalmente por barcos pesqueiros, e também através de um sistema de biópsia. A região variável do exon 2 do gene DQB do MHC foi amplificada por PCR (Polymerase Chain Reaction) em 109 amostras de toninhas (Rio de Janeiro n=32, Rio Grande do Sul n=52, Argentina n=25), 35 amostras de lobo marinho sul-americano e 30 amostras de baleia franca austral, utilizando-se um par de primers heterólogos. O fragmento resultante de 172 pares de bases foi analisado quanto ao polimorfismo de seqüência através da técnica de SSCP (Polimorfismo de Conformação de Fita Simples) em todas as amostras de toninha e de lobo marinho sul-americano e 14 amostras de baleia franca austral. Dificuldades associadas à amplificação resultaram em padrões de SSCP pouco informativos para as amostras de lobo marinho sul-americano e baleia franca austral Todas as amostras de toninha apresentaram um padrão de pelo menos 4 bandas por indivíduo. As 4 bandas de um único indivíduo do Rio Grande do Sul foram seqüenciadas, tendo sido possível verificar que 2 seqüências relacionadas ao genes DQB estão sendo amplificadas com estes primers. Pelas análises de SSCP foi possível detectar ausência de variabilidade para as amostras de toninha provenientes do Rio de Janeiro e diferenciá-las da população da Argentina, que é polimórfica. A população do Rio Grande do Sul parece apresentar níveis intermediários de variação em relação aos extremos da distribuição da espécie. Analisando as três populações amostradas, conclui-se que a espécie apresenta baixos níveis de variabilidade para o loco DQB, a exemplo do que é reportado para os genes de MHC de outros mamíferos marinhos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bola-DRB3 gene participates in the development of the immune response and is highly polymorphic. For these reasons, it has been a candidate gene in studies of the genetic basis of disease resistance and in population genetic analysis. South American native cattle breeds have been widely replaced by improved exotic breeds leading to a loss of genetic resources. In particular South American native breeds have high levels of fertility and disease resistance. This work describes genetic variability in the BoLA-DRB3 gene in native (Caracu, Pantaneiro, Argentinean Creole) and exotic (Holstein, Jersey, Nelore, Gir) cattle breeds in Brazil and Argentina. PCR-RFLP alleles were identified by combining the restriction patterns for the BoLA-DRB3.2 locus obtained with RsaI, BstY, and HaeIII restriction enzymes. Allelic frequencies and deviations from the Hardy-Weinberg equilibrium were also calculated. Analysis of the 24 BoLA-DRB3 PCR-RFLP alleles identified showed differences in the allele distributions among breeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diaphragm myopathy has been described in patients with heart failure (HF), with alterations in myosin heavy chains (MHC) expression. The pathways that regulate MHC expression during HF have not been described, and myogenic regulatory factors (MRFs) may be involved. The purpose of this investigation was to determine MRF mRNA expression levels in the diaphragm. Diaphragm muscle from both HF and control Wistar rats was studied when overt HF had developed, 22 days after monocrotaline administration. MyoD, myogenin and MRF4 gene expression were determined by RT-PCR and MHC isoforms by polyacrylamide gel electrophoresis. Heart failure animals presented decreased MHC IIa/IIx protein isoform and MyoD gene expression, without altering MHC I, IIb, myogenin and MRF4. Our results show that in HF, MyoD is selectively down-regulated, which might be associated with alterations in MHC IIa/IIx content. These changes are likely to contribute to the diaphragm myopathy caused by HF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart failure (NF) is frequently associated with euthyroid sicksyndrome (low T-3 and elevated rT(3)). We investigated if altered thyroid hormone in HF could affect expression of the TH receptor (TR alpha 1), and alpha and beta myosin heavy chains (alpha-MHC beta-MHC). HF was provoked in rats by aortic stenosis. We showed that rT(3) generated front liver and kidney deiodination significantly increased and T-3 decreased in HE; there was significantly higher TR alpha 1 expression, no alpha-MHC expression, but beta-MHC expression. Changes in TR alpha 1 could be compensating for low T-3 from HF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-classical human leukocyte antigen (HLA) class I genes present a very low rate of variation. So far, only 10 HLA-E alleles encoding three proteins have been described, but only two are frequently found in worldwide populations. Because of its historical background, Brazilians are very suitable for population genetic studies. Therefore, 104 bone marrow donors from Brazil were evaluated for HLA-E exons 14. Seven variation sites were found, including two known single nucleotide polymorphisms (SNPs) at positions +424 and +756 and five new SNPs at positions +170 (intron 1), +1294 (intron 3), +1625, +1645 and +1857 (exon 4). Haplotyping analysis did show eight haplotypes, three of them known as E*01:01:01, E*01:03:01 and E*01:03:02:01 and five HLA-E new alleles that carry the new variation sites. The HLA-E*01:01:01 allele was the predominant haplotype (62.50%), followed by E*01:03:02:01 (24.52%). Selective neutrality tests have disclosed an interesting pattern of selective pressures in which balancing selection is probably shaping allele frequency distributions at an SNP at exon 3 (codon 107), sequence diversity at exon 4 and the non-coding regions is facing significant purifying pressure. Even in an admixed population such as the Brazilian one, the HLA-E locus is very conserved, presenting few polymorphic SNPs in the coding region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperthyroidism promotes cardiac hypertrophy and the Angiotensin type 1 receptor (AT1R) has been demonstrated to mediate part of this response. Recent studies have uncovered a potentially important role for the microRNAs (miRNAs) in the control of diverse aspects of cardiac function. Then, the objective of the present study was to investigate the action promoted by hyperthyroidism on β-MHC/miR-208b expression and on α-MHC/miR-208a expression, as well as the possible contribution of the AT1R in this event. The findings of this study confirmed that AT1R is a key mediator of the cardiac hypertrophy induced by hyperthyroidism. Additionally, we demonstrated that like β-MHC, miR-208b was down-regulated in the hyperthyroid group. Similarly, like the expression of its host gene, α-MHC, miR-208a expression was up-regulated in response to hyperthyroidism. Finally, our data suggest for the first time that AT1R mediates the hyperthyroidism-induced increase on cardiac miRNA-208a/α-MHC levels, while does not influence on the reduction of miRNA-208b/β-MHC levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.