936 resultados para mesenchymal stem cells (MSC), acute myocardial infarct (AMI), chemokine receptors, chemokines, migration, homing, engraftment, CD44


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lack of suitable donors for all solid-organ transplant programs is exacerbated in lung transplantation by the low utilization of potential donor lungs, due primarily to donor lung injury and dysfunction, including pulmonary edema. The current studies were designed to determine if intravenous clinical-grade human mesenchymal stem (stromal) cells (hMSCs) would be effective in restoring alveolar fluid clearance (AFC) in the human ex vivo lung perfusion model, using lungs that had been deemed unsuitable for transplantation and had been subjected to prolonged ischemic time. The human lungs were perfused with 5% albumin in a balanced electrolyte solution and oxygenated with continuous positive airway pressure. Baseline AFC was measured in the control lobe and if AFC was impaired (defined as

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This series of experiments attempted to characterize the abilities of stem cells derived from bone marrow and adipose tissue to integrate into the sensory epithelium of the inner ear and to differentiate into hair cells or neural cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: New reconstructive and less invasive methods have been searched to optimize bone formation and osseointegration of dental implants in maxillary sinus augmentation. Purpose: The aim of the presented ovine split-mouth study was to compare bovine bone mineral (BBM) alone and in combination with mesenchymal stem cells (MSCs) regarding their potential in sinus augmentation. Material and Methods: Bilateral sinus floor augmentations were performed in six adult sheep. BBM and MSCs were placed into the test side and only BBM in the contra-lateral control side of each sheep. Animals were sacrificed after 8 and 16 weeks. Augmentation sites were analyzed by computed tomography, histology, and histomorphometry. Results: The initial volumes of both sides were similar and did not change significantly with time. A tight connection between the particles of BBM and the new bone was observed histologically. Bone formation was significantly (p = 0.027) faster by 49% in the test sides. Conclusion: The combination of BBM and MSCs accelerated new bone formation in this model of maxillary sinus augmentation. This could allow early placement of implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone. (C) 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous three-dimensional (3-D) silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (non-reinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to 6 weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microcomputer tomography (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1, and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for non-reinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3-D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent interest in the annexin 1 field has come from the notion that specific G-protein-coupled receptors, members of the formyl-peptide receptor (FPR) family, appear to mediate the anti-inflammatory actions of this endogenous mediator. Administration of the annexin 1 N-terminal derived peptide Ac2-26 to mice after 25 min ischemia significantly attenuated the extent of acute myocardial injury as assessed 60 min postreperfusion. Evident at the dose of 1 mg/kg (similar to9 nmol per animal), peptide Ac2-26 cardioprotection was intact in FPR null mice. Similarly, peptide Ac2-26 inhibition of specific markers of heart injury (specifically myeloperoxidase activity, CXC chemokine KC contents, and endogenous annexin 1 protein expression) was virtually identical in heart samples collected from wild-type and FPR null mice. Mouse myocardium expressed the mRNA for FPR and the structurally related lipoxin A(4) receptor, termed ALX; thus, comparable equimolar doses of two ALX agonists (W peptide and a stable lipoxin A4 analog) exerted cardioprotection in wild-type and FPR null mice to an equal extent. Curiously, marked (>95%) blood neutropenia produced by an anti-mouse neutrophil serum did not modify the extent of acute heart injury, whereas it prevented the protection afforded by peptide Ac2-26. Thus, this study sheds light on the receptor mechanism(s) mediating annexin 1-induced cardioprotection and shows a pivotal role for ALX and circulating neutrophil, whereas it excludes any functional involvement of mouse FPR. These mechanistic data can help in developing novel therapeutics for acute cardioprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to isolate, culture, and characterize mesenchymal stem cells (MSCs) from horse bone marrow (BM) using the techniques of flow cytometry, immunocytochemistry, cytogenetics, and electron microscopy. Immunophenotypic analysis revealed the presence of MSCs with high expression of the CD90 marker, lower expression of the CD44 marker, and absent expression of the CD34 marker. In assays of differentiation, the positive response to osteogenic (OST), chondrogenic (CDG), and adipogenic (ADP) differentiation signals was observed and characterized by deposition of calcium-rich extracellular matrix (OST), proteoglycans and collagen II (CDG) and intracellular deposition of fat drops (ADP). In immunocytochemical characterization, MSCs were immunopositive for CD44, vimentin, and PCNA, and they were negative for CD13. In the ultrastructural analysis of MSCs, the most outstanding characteristic was the presence of rough endoplasmic reticulum with very dilated cisterns filled with a low electrodensity material. Additionally, MSCs had normal karyotypes (2n=64) as evidenced by cytogenetic analysis, and aneuploidy in metaphase was not observed. The protocols for isolating, culturing, and characterizing equine MSCs used in this study were shown to be appropriate for the production of a cell population with a good potential for differentiation and without aneuploidy that can be used to study future cellular therapies. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cardiovascular diseases remain leaders as the major causes of mortality in Western society. Restoration of the circulation through construction of bypass surgical treatment is regarded as the gold standard treatment of peripheral vascular diseases, and grafts are necessary for this purpose. The great saphenous vein is often not available and synthetic grafts have their limitations. Therefore, new techniques to produce alternative grafts have been developed and, in this sense, tissue engineering is a promising alternative to provide biocompatible grafts. This study objective was to reconstruct the endothelium layer of decellularized vein scaffolds, using mesenchymal stem cells (MSCs) and growth factors obtained from platelets. Methods: Fifteen nonpregnant female adult rabbits were used for all experiments. Adipose tissue and vena cava were obtained and subjected to MSCs isolation and tissue decellularization, respectively. MSCs were subjected to differentiation using endothelial inductor growth factor (EIGF) obtained from human platelet lysates. Immunofluorescence, histological and immunohistochemical analyses were employed for the final characterization of the obtained blood vessel substitute. Results: The scaffolds were successfully decellularized with sodium dodecyl sulfate. MSCs actively adhered at the scaffolds, and through stimulation with EIGF were differentiated into functional endothelial cells, secreting significantly higher quantities of von Willebrand factor (0.85 μg/mL; P < .05) than cells cultivated under the same conditions, without EIGF (0.085 μg/mL). Cells with evident morphologic characteristics of endothelium were seen at the lumen of the scaffolds. These cells also stained positive for fascin protein, which is highly expressed by differentiated endothelial cells. Conclusions: Taken together, the use of decellularized bioscaffold and subcutaneous MSCs seems to be a potential approach to obtain bioengineered blood vessels, in the presence of EIGF supplementation. © 2013 Society for Vascular Surgery.