982 resultados para membrane permeability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathogenic biotypes of Yersinia enterocolitica (serotypes O:3, O:8, O:9, and O:13), but not environmental biotypes (serotypes O:5, O:6, O:7,8, and O:7,8,13,19), increased their permeability to hydrophobic probes when they were grown at pH 5.5 or in EGTA-supplemented (Ca(2+)-restricted) media at 37 degrees C. A similar observation was also made when representative strains of serotypes O:8 and O:5 were tested after brief contact with human monocytes. The increase in permeability was independent of the virulence plasmid. The role of lipopolysaccharide (LPS) in this phenomenon was examined by using Y. enterocolitica serotype O:8. LPS aggregates of bacteria grown in acidic or EGTA-supplemented broth took up more N-phenylnaphthylamine than LPS aggregates of bacteria grown in standard broth and also showed a marked increase in acyl chain fluidity which correlated with permeability, as determined by measurements obtained in the presence of hydrophobic dyes. No significant changes in O-antigen polymerization were observed, but lipid A acylation changed depending on the growth conditions. In standard medium at 37 degrees C, there were hexa-, penta-, and tetraacyl lipid A forms, and the pentaacyl form was dominant. The amount of tetraacyl lipid A increased in EGTA-supplemented and acidic media, and hexaacyl lipid A almost disappeared under the latter conditions. Our results suggest that pathogenic Y. enterocolitica strains modulate lipid A acylation coordinately with expression of virulence proteins, thus reducing LPS packing and increasing outer membrane permeability. The changes in permeability, LPS acyl chain fluidity, and lipid A acylation in pathogenic Y. enterocolitica strains approximate the characteristics in Yersinia pseudotuberculosis and Yersinia pestis and suggest that there is a common outer membrane pattern associated with pathogenicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The outer membrane (OM) of the intracellular parasite Brucella abortus is permeable to hydrophobic probes and resistant to destabilization by polycationic peptides and EDTA. The significance of these unusual properties was investigated in a comparative study with the opportunistic pathogens of the genus Ochrobactrum, the closest known Brucella relative. Ochrobactrum spp. OMs were impermeable to hydrophobic probes and sensitive to polymyxin B but resistant to EDTA. These properties were traced to lipopolysaccharide (LPS) because (i) insertion of B. abortus LPS, but not of Escherichia coli LPS, into Ochrobactrum OM increased its permeability; (ii) permeability and polymyxin B binding measured with LPS aggregates paralleled the results with live bacteria; and (iii) the predicted intermediate results were obtained with B. abortus-Ochrobactrum anthropi and E. coli-O. anthropi LPS hybrid aggregates. Although Ochrobactrum was sensitive to polymyxin, self-promoted uptake and bacterial lysis occurred without OM morphological changes, suggesting an unusual OM structural rigidity. Ochrobactrum and B. abortus LPSs showed no differences in phosphate, qualitative fatty acid composition, or acyl chain fluidity. However, Ochrobactrum LPS, but not B. abortus LPS, contained galacturonic acid. B. abortus and Ochrobactrum smooth LPS aggregates had similar size and zeta potential (-12 to -15 mV). Upon saturation with polymyxin, zeta potential became positive (1 mV) for Ochrobactrum smooth LPS while remaining negative (-5 mV) for B. abortus smooth LPS, suggesting hindered access to inner targets. These results show that although Ochrobactrum and Brucella share a basic OM pattern, subtle modifications in LPS core cause markedly different OM properties, possibly reflecting the adaptive evolution of B. abortus to pathogenicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gelliquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

examined in Choanephora cucurbita rum during the early stages of infection by Piptocephalis virginiana » There was a small but consistent increase in the leakage of electrolytes, amino acids and sugars as a result of infection. These low levels of differential leakage in infected tissues are explained on the basis of the nature of this obligate, biotrophic, mycoparasitic system. Quantitative analysis of the twenty six amino acids and amino compounds detected in the leacheates — showed similar profiles in infected and control host and no new species of amino acids or amino compounds were detected in either infected or control host leacheates. Comparatively high amounts of aspartic acid, glutamic acid and alanine were found in the leacheates of host and infected host . Analyses of the sugars comprising the leacheates of infected and control host showed the presence of eight sugars, among which glucose was found in significant amounts (50-53%) ' The nutritional implication of this preferential leakage is discussed. No significant difference was observed in the leacheates of infected host sugar profiles compared with that of the control host. Profiles of the internal pool sugars of infected and control host did not reflect that obtained from the leacheate data, perhaps owing to leakage of sugars in a selective manner . Membrane lipid analyses yielded higher levels of lipid in infected host compared with the control, both at the 24 h and 36 h analyses. In addition, preliminary investigations of phosphorous-32 incorporation and turnover in phospholipids showed higher levels of 32p incorporation and turnover in infected host compared with the control. No apparent difference was noted in the profiles of the neutral lipid classes and the polar lipid classes of the membrane lipids as determined by one and two dimensional thin-layer chromatography respectively. However, a small but consistently higher degree of unsaturation was detected in the fatty acids of infected tissue compared with the control. Also, '^''-^^''^^'-'-^'^^c acid, a polyunsaturated fatty acid previously reported to show a direct correlation during the early stages of infection and the degree of parasitism of P. virginiana on C. cucurbitarum , was found in higher amounts in infected host membrane lipids compared with that of the control host. The implications of these membrane lipid alterations are discussed with particular reference to the small but consistently higher leakage of electrolytes, amino acids and sugars observed during infection in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcellular diffusion across the absorptive epithelial cells (enterocytes) of the small intestine is the main route of absorption for most orally administered drugs. The process by which lipophilic compounds transverse the aqueous environment of the cytoplasm, however, remains poorly defined. In the present study, we have identified a structurally diverse group of lipophilic drugs that display low micromolar binding affinities for a cytosolic lipid-binding protein—intestinal fatty acid-binding protein (I-FABP). Binding to I-FABP significantly enhanced the transport of lipophilic drug molecules across a model membrane, and the degree of transport enhancement was related to both drug lipophilicity and I-FABP binding affinity. These data suggest that intracellular lipid-binding proteins such as I-FABP may enhance the membrane transport of lipophilic xenobiotics and facilitate drug access to the enterocyte cytoplasm and cytoplasmic organelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Bone maintenance after mandibular reconstruction with autogenous iliac crest may be disappointing due to extensive resorption in the long term. The potential of the guided-bone regeneration (GBR) technique to enhance the healing process in segmental defects lacks comprehensive scientific documentation. This study aimed to investigate the influence of polylactide membrane permeability on the fate of iliac bone graft (BG) used to treat mandibular segmental defects. Materials and Methods: Unilateral 10-mm-wide segmental defects were created through the mandibles of 34 mongrel dogs. All defects were mechanically stabilized, and the animals were divided into 6 treatment groups: control, BG alone, microporous membrane (poly L/DL-lactide 80/20%) (Mi); Mi plus BG; microporous laser-perforated (15 cm2 ratio) membrane (Mip), and Mip plus BG. Calcein fluorochrome was injected intravenously at 3 months, and animal euthanasia was carried out at 6 months postoperatively. Results: Histomorphometry showed that BG protected by Mip was consistently related to larger amounts of bone compared with other groups (P ≤ .0001). No difference was found between defects treated with Mip alone and BG alone. Mi alone rendered the least bone area and reduced the amount of grafted bone to control levels. Data from bone labeling indicated that the bone formation process was incipient in the BG group at 3 months postoperatively regardless of whether or not it was covered by membrane. In contrast, GBR with Mip tended to enhance bone formation activity at 3 months. Conclusions: The use of Mip alone could be a useful alternative to BG. The combination of Mip membrane and BG efficiently delivered increased bone amounts in segmental defects compared with other treatment modalities. © 2008 American Association of Oral and Maxillofacial Surgeons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously we proposed that endogenous amphiphilic substances may partition from the aqueous cytoplasm into the lipid phase during dehydration of desiccation-tolerant organ(ism)s and vice versa during rehydration. Their perturbing presence in membranes could thus explain the transient leakage from imbibing organisms. To study the mechanism of this phenomenon, amphiphilic nitroxide spin probes were introduced into the pollen of a model organism, Typha latifolia, and their partitioning behavior during dehydration and rehydration was analyzed by electron paramagnetic resonance spectroscopy. In hydrated pollen the spin probes mainly occurred in the aqueous phase; during dehydration, however, the amphiphilic spin probes partitioned into the lipid phase and had disappeared from the aqueous phase below 0.4 g water g−1 dry weight. During rehydration the probes reappeared in the aqueous phase above 0.4 g water g−1 dry weight. The partitioning back into the cytoplasm coincided with the decrease of the initially high plasma membrane permeability. A charged polar spin probe was trapped in the cytoplasm during drying. Liposome experiments showed that partitioning of an amphiphilic spin probe into the bilayer during dehydration caused transient leakage during rehydration. This was also observed with endogenous amphipaths that were extracted from pollen, implying similar partitioning behavior. In view of the fluidizing effect on membranes and the antioxidant properties of many endogenous amphipaths, we suggest that partitioning with drying may be pivotal to desiccation tolerance, despite the risk of imbibitional leakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional expression of the multidrug resistance protein P-glycoprotein (P-gp) in Escherichia coli is providing an appropriate system for structure/function studies and might provide an invaluable tool to screen potential P-gp substrates and inhibitors. The major problem encountered in such studies, however, is the impermeability of the outer membrane of Gram-negative bacteria, which protects microorganisms against the cytotoxic effects of many lipophilic cancer drugs and blocks accessibility of P-gp reversal agents. In the present study we have constructed, by mutagenesis, a "leaky" (containing a permeable outer membrane) strain of E. coli, which is significantly more susceptible to the toxic effect of known P-gp substrates and cytotoxic agents. Expression of mouse Mdr1 in the mutant confers cross-resistance to daunomycin, quinidine, chloroquine, rhodamine 6G, and puromycin. Most importantly, reserpine and doxorubicin completely abolish Mdr1-mediated rhodamine resistance. The results provide strong support for previous observations, suggesting that Mdr1 can be expressed functionally in E. coli and indicate that the leaky mutant will be useful for further structure/function studies of the heterologously expressed eukaryotic drug efflux protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel cellulose membrane was prepared by using amine oxides as the solvent and its mechanical performance was measured. Steady-state permeation rates of carbon dioxide, hydrogen, methane, nitrogen, oxygen, argon and helium in the homogeneous dense cellulose membrane were measured in the temperature range of 298-353 K and under gas pressures up to 1 MPa. The effect of swelling on hydrophilic membrane permeability was studied in some detail on the cellulose membrane. The difference in gas permeability between the "dry" cellulose membrane and the "water-swollen" cellulose membrane was investigated, and the gas permeability between the cellulose membrane and the Cellophane was compared. In this paper, the separation performance Of CO2 over H-2 in a "water-swollen" cellulose membrane is reported for the first time and the separation factor Of CO2/H-2 can be up to 15. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: One of the challenges associated with cell-based therapies for repairing the retina is the development of suitable materials on which to grow and transplant retinal cells. Using the ARPE-19 cell line, we have previously demonstrated the feasibility of growing RPE-derived cells on membranes prepared from the silk protein fibroin. The present study was aimed at developing a porous, ultra-thin fibroin membrane that might better support development of apical-basal polarity in culture, and to extend this work to primary cultures of human RPE cells. Methods: Ultra-thin fibroin membranes were prepared using a highly polished casting table coated with Topas® (a cyclic olefin copolymer) and a 1:0.03 aqueous solution of fibroin and PEO (Mv 900 000 g/mol). Following drying, the membranes were water annealed to make them water-stable, washed in water to remove PEO, sterilised by treatment with 95% ethanol, and washed extensively in saline. Primary cultures containing human RPE cells were established from donor posterior eye cups and maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum and antibiotics. First passage cultures were seeded onto fibroin membranes pre-coated with vitronectin and grown for 6 weeks in medium supplemented with 1% serum. Comparative cultures were established on porous 1.0 µm pore PET membrane (Millipore) and using ARPE-19 cells. Results: The fibroin membranes displayed an average thickness of 3 µm and contained numerous dimples/pore-like structures of up to 3-5 µm in diameter. The primary cultures predominantly contained pigmented epithelial cells, but mesenchymal cells (presumed fibroblasts) were also often present. Passaged cultures appeared to attach equally well to either fibroin or PET membranes. Over time cells on either material adopted a more cobblestoned morphology. Conclusions: Progress has been made towards developing a porous ultra-thin fibroin membrane that supports cultivation of RPE cells. Further studies are required to determine the degree of membrane permeability and RPE polarity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of paramagnetic probes in membrane research is reviewed. Electron paramagnetic resonance studies on model and biological membranes doped with covalent and non-covalent spin-labels have been discussed with special emphasis on the methodology and the type of information obtainable on several important phenomena like membrane fluidity, lipid flip-flop, lateral diffusion of lipids, lipid phase separation, lipid bilayer phase transitions, lipid-protein interactions and membrane permeability. Nuclear magnetic resonance spectroscopy has also been effectively used to study the conformations of cation mediators across membranes and to analyse in detail the transmembrane ionic motions at the mechanistic level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitochondria dynamics is crucial to many biological processes such as mitochondria fusion and fission, which is highly correlated to the mechanics of single mitochondria. However, the mechanobiological coupling of mitochondria has been poorly understood. Here membrane deformability and membrane tension of individual mitochondria isolated from MtDsRed labeled human embryonic T-Rex-293 kidney cells were measured using a micropipette aspiration assay. The results demonstrated that membrane deformation of isolated mitochondria exhibited an elastic transition phase followed by an equilibrium phase, and mitochondrial membrane tension was proportional to the area compressibility. It was also indicated that mitochondrial membrane deformability was significantly affected by physical chemical factors such as osmotic pressure or pH value, and was further correlated to mitochondrial functionality in different respiratory states and Ca2+ regulation. These findings provide a new insight into understanding the mechanical regulation of mitochondrial physiology.