961 resultados para maximum sustainable yield


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monthly catch data of bonito Sarda chiliensis from northern Chile, from 1976 to 1989, were used to obtain a series of estimates of the Z-G parameter (i.e., total mortality minus the growth coefficient in weight). This series was then used to estimate a maximum sustainable yield of 4,500 t/year through a modified version of the surplus production model of J. Csirke and J. Caddy. The status of the fishery is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSY per recruit of Tenualosa ilisha in the Meghna river was predicted as 112 g per recruit at the F(msy)=0.6/yr and at T(c)=0.6/yr. But Y/R=95 g per recruit was obtained at the existing fishing level, F=1.14/yr and at T(c)=0.6/yr. Existing F level was nearly double than the F(msy) level. Fishing pressure should be reduced immediately from F=1.14/yr to F(msy)=0.6/yr. F(msy)=1.14/yr was the same at first capture, T(c)=1.0, 1.2 and 1.4/yr, and MSY could be obtained as 142 g, 162 g and 176 g per recruit respectively. It is easier to change the first capture age (Tc) rather than changing off level. So, hilsa fishery manager may adopt F(msy)=1.14/yr while age at first capture must be increased from T(c)=0.6/yr (3 cm size group) to T(c)=1.4/yr (25 cm size group), by which 1.8 times production could be increased than the present production. MSY also possible to obtain as 201 g and 210 g per recruit at F(msy)=2.0/yr and 4.0/yr at T(c)=1.7/yr and 1.9/yr respectively. Under both the situations, hilsa production could be increased 2 times than the present production. To obtain the MSY=210 g per recruit the fishing level could be increased up to F=4.0/yr at T(c)=1.9/yr (34 cm size group). Economic point of view, hilsa fishery managers may choose to obtain the economic MSY as 201 g per recruit at F(msy)=2.0/yr and T(c)=1.7yr (31 cm size group) in the Meghna river of Bangladesh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gulf of Carpentaria Finfish Trawl Fishery operates under developmental permits and harvests five main tropical snapper species. The fishery operates in eastern Gulf of Carpentaria waters and is managed by Fisheries Queensland on behalf of the Queensland Fishery Joint Authority. For the years 2004–2014, the fishery Total Allowable Commercial Catch (TACC) was fixed at 1250 t and substantially under-filled. In 2011 new stock analyses were published for the fishery. Results were presented to industry including the estimated equilibrium maximum sustainable yield (MSY) of 450 t for east Gulf of Carpentaria waters. The MSY value represented the maximum average combined species harvest that can be taken long-term; combining MSY harvests of the five main species. For the 2015 calendar year, a revised 450 t harvest quota was set for Crimson Snapper, Saddletail Snapper, Red Emperor and other Emperor species; plus a tonnage allowance for other permitted species. The revised quota tonnage represented a considerable reduction from the 1250 t set in previous years. Industry raised questions about not understanding how the MSY was arrived at and why it was less than early 1990s yield estimates. The purpose of this report is to explain the MSY estimates for east Gulf of Carpentaria waters. The 450 t MSY represents at present the best estimate available and is consistent with pre-2011 estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Maximum Sustainable Yields of all fish species for 9 man-made reservoirs in Sri Lanka were calculated by the simplified version of Schaefer Model. The relationship between the Maximum Sustainable Yield (MSY) and Morpho-edaphic Index, (MEI) for Sri Lankan reservoirs was found to be: Log sub(e) MSY = 0.9005 log sub(e) MEI + 1.9220. MSY for these reservoirs were estimated using this relationship. The number of Tilapia) juveniles needed to be recruited to the fisheries of some reservoirs in addition to the present recruitment to increase the fish production to the level estimated by MEI relationship were calculated mathematically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International fisheries agencies recommend exploitation paths that satisfy two features. First, for precautionary reasons exploitation paths should avoid high fishing mortality in those fisheries where the biomass is depleted to a degree that jeopardise the stock's capacity to produce the Maximum Sustainable Yield (MSY). Second, for economic and social reasons, captures should be as stable (smooth) as possible over time. In this article we show that a conflict between these two interests may occur when seeking for optimal exploitation paths using age structured bioeconomic approach. Our results show that this conflict be overtaken by using non constant discount factors that value future stocks considering their relative intertemporal scarcity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV : FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen production declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification.