987 resultados para mRNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160–455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the [beta]-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between [beta] strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-mRNA splicing occurs in spliceosomes whose assembly and activation are critical for splice site selection and catalysis. The highly conserved NineTeen complex protein complex stabilizes various snRNA and protein interactions early in the spliceosome assembly pathway. Among several NineTeen complex-associated proteins is the nonessential protein Bud31/Ycr063w, which is also a component of the Cef1p subcomplex. A role for Bud31 in pre-mRNA splicing is implicated by virtue of its association with splicing factors, but its specific functions and spliceosome interactions are uncharacterized. Here, using in vitro splicing assays with extracts from a strain lacking Bud31, we illustrate its role in efficient progression to the first catalytic step and its requirement for the second catalytic step in reactions at higher temperatures. Immunoprecipitation of functional epitope-tagged Bud31 from in vitro reactions showed that its earliest association is with precatalytic B complex and that the interaction continues in catalytically active complexes with stably bound U2, U5, and U6 small nuclear ribonucleoproteins. In complementary experiments, wherein precatalytic spliceosomes are selected from splicing reactions, we detect the occurrence of Bud31. Cross-linking of proteins to pre-mRNAs with a site-specific 4-thio uridine residue at the -3 position of exon 1 was tested in reactions with WT and bud31 null extracts. The data suggest an altered interaction between a similar to 25-kDa protein and this exonic residue of pre-mRNAs in the arrested bud31 null spliceosomes. These results demonstrate the early spliceosomal association of Bud31 and provide plausible functions for this factor in stabilizing protein interactions with the pre-mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p53 mRNA has been shown to be translated into two isoforms, full-length p53 (FL-p53) and a truncated isoform Delta N-p53, which modulates the functions of FL-p53 and also has independent functions. Previously, we have shown that translation of p53 and Delta N-p53 can be initiated at Internal Ribosome Entry Sites (IRES). These two IRESs were shown to regulate the translation of p53 and Delta N-p53 in a distinct cell-cycle phase-dependent manner. Earlier observations from our laboratory also suggest that the structural integrity of the p53 RNA is critical for IRES function and is compromised by mutations that affect the structure as well as RNA protein interactions. In the current study, using RNA affinity approach we have identified Annexin A2 and PTB associated Splicing Factor (PSF/SFPQ) as novel ITAFs for p53 IRESs. We have showed that the purified Annexin A2 and PSF proteins specifically bind to p53 IRES elements. Interestingly, in the presence of calcium ions Annexin A2 showed increased binding with p53 IRES. Immunopulldown experiments suggest that these two proteins associate with p53 mRNA ex vivo as well. Partial knockdown of Annexin A2 and PSF showed decrease in p53 IRES activity and reduced levels of both the p53 isoforms. More importantly the interplay between Annexin A2, PSF and PTB proteins for binding to p53mRNA appears to play a crucial role in IRES function. Taken together, our observations suggest pivotal role of two new trans-acting factors in regulating the p53-IRES function, which in turn influences the synthesis of p53 isoforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor-suppressor protein p53, the `guardian of the genome', is critical in maintaining cellular homeostasis and genomic stability. Earlier, we have reported the discovery of internal ribosome entry sites (IRESs) within the p53 mRNA that regulate the translation of the full length and its N-terminal-truncated isoform, Delta N-p53. Polypyrimidine tract-binding protein (PTB) is an IRES trans-acting factor that positively regulates the IRES activities of both p53 isoforms by relocating from nucleus to the cytoplasm during stress conditions. Here we have demonstrated the putative contact points of PTB on the p53 IRES RNA. Studies on mutations that occur naturally in the 5' untranslated region (5' UTR) in p53 mRNA were lacking. We have investigated a naturally occurring C-to-T single-nucleotide polymorphism (SNP) first reported in human melanoma tumors. This SNP is at position 119 in the 5' UTR of p53 mRNA and we demonstrate that it has consequences on the translational control of p53. Introduction of this SNP has led to decrease in cap-independent translation from p53 5' UTR in bicistronic reporter assay. Further, the effects of this SNP on cap-independent translation have been studied in the context of p53 cDNA as well. Interestingly, the 5' UTR with this SNP has shown reduced binding to PTB that can be corroborated to its weaker IRES activity. Previously, it has been shown that G2-M checkpoint, DNA-damaging stress and oncogenic insult favor IRES-mediated translation. Under similar conditions, we demonstrate that this SNP interferes with the enhancement of the IRES activity of the 5' UTR. Taken together, the results demonstrate for the first time that SNP in the 5' UTR of the p53 mRNA might have a role in translational control of this critical tumor-suppressor gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translational regulation of the p53 mRNA can determine the ratio between p53 and its N-terminal truncated isoforms and therefore has a significant role in determining p53-regulated signaling pathways. Although its importance in cell fate decisions has been demonstrated repeatedly, little is known about the regulatory mechanisms that determine this ratio. Two internal ribosome entry sites (IRESs) residing within the 5'UTR and the coding sequence of p53 mRNA drive the translation of full-length p53 and Delta 40p53 isoform, respectively. Here, we report that DAP5, a translation initiation factor shown to positively regulate the translation of various IRES containing mRNAs, promotes IRES-driven translation of p53 mRNA. Upon DAP5 depletion, p53 and Delta 40p53 protein levels were decreased, with a greater effect on the N-terminal truncated isoform. Functional analysis using bicistronic vectors driving the expression of a reporter gene from each of these two IRESs indicated that DAP5 preferentially promotes translation from the second IRES residing in the coding sequence. Furthermore, p53 mRNA expressed from a plasmid carrying this second IRES was selectively shifted to lighter polysomes upon DAP5 knockdown. Consequently, Delta 40p53 protein levels and the subsequent transcriptional activation of the 14-3-3 sigma gene, a known target of Delta 40p53, were strongly reduced. In addition, we show here that DAP5 interacts with p53 IRES elements in in vitro and in vivo binding studies, proving for the first time that DAP5 directly binds a target mRNA. Thus, through its ability to regulate IRES-dependent translation of the p53 mRNA, DAP5 may control the ratio between different p53 isoforms encoded by a single mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initiator tRNAs are special in their direct binding to the ribosomal P-site due to the hallmark occurrence of the three consecutive G-C base pairs (3GC pairs) in their anticodon stems. How the 3GC pairs function in this role, has remained unsolved. We show that mutations in either the mRNA or 16S rRNA leading to extended interaction between the Shine-Dalgarno (SD) and anti-SD sequences compensate for the vital need of the 3GC pairs in tRNA(fMet) for its function in Escherichia coli. In vivo, the 3GC mutant tRNA(fMet) occurred less abundantly in 70S ribosomes but normally on 30S subunits. However, the extended SD:anti-SD interaction increased its occurrence in 70S ribosomes. We propose that the 3GC pairs play a critical role in tRNA(fMet) retention in ribosome during the conformational changes that mark the transition of 30S preinitiation complex into elongation competent 70S complex. Furthermore, treating cells with kasugamycin, decreasing ribosome recycling factor (RRF) activity or increasing initiation factor 2 (IF2) levels enhanced initiation with the 3GC mutant tRNA(fMet), suggesting that the 70S mode of initiation is less dependent on the 3GC pairs in tRNA(fMet).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640 1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-mRNA splicing requires interaction of cis- acting intron sequences with trans -acting factors: proteins and small nuclear ribonucleoproteins (snRNPs). The assembly of these factors into a large complex, the spliceosome, is essential for the subsequent two step splicing reaction. First, the 5' splice site is cleaved and free exon 1 and a lariat intermediate (intron- exon2) form. In the second reaction the 3' splice site is cleaved the exons ligated and lariat intron released. A combination of genetic and biochemical techniques have been used here to study pre-mRNA splicing in yeast.

Yeast introns have three highly conserved elements. We made point mutations within these elements and found that most of them affect splicing efficiency in vivo and in vitro, usually by inhibiting spliceosome assembly.

To study trans -acting splicing factors we generated and screened a bank of temperature- sensitive (ts) mutants. Eleven new complementation groups (prp17 to prp27) were isolated. The four phenotypic classes obtained affect different steps in splicing and accumulate either: 1) pre-mRNA, 2) lariat intermediate, 3) excised intron or 4) both pre-mRNA and intron. The latter three classes represent novel phenotypes. The excised intron observed in one mutant: prp26 is stabilized due to protection in a snRNP containing particle. Extracts from another mutant: prpl8 are heat labile and accumulate lariat intermediate and exon 1. This is especially interesting as it allows analysis of the second splicing reaction. In vitro complementation of inactivated prp18 extracts does not require intact snRNPs. These studies have also shown the mutation to be in a previously unknown splicing protein. A specific requirement for A TP is also observed for the second step of splicing. The PRP 18 gene has been cloned and its polyadenylated transcript identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dinoflagellates possess many physiological processes that appear to be under post-transcriptional control. However, the extent to which their genes are regulated post-transcriptionally remains unresolved. To gain insight into the roles of differential mRNA stability and de novo transcription in dinoflagellates, we biosynthetically labeled RNA with 4-thiouracil to isolate newly transcribed and pre-existing RNA pools in Karenia brevis. These isolated fractions were then used for analysis of global mRNA stability and de novo transcription by hybridization to a K. brevis microarray. Global K. brevis mRNA half-lives were calculated from the ratio of newly transcribed to pre-existing RNA for 7086 array features using the online software HALO (Half-life Organizer). Overall, mRNA half-lives were substantially longer than reported in other organisms studied at the global level, ranging from 42 minutes to greater than 144 h, with a median of 33 hours. Consistent with well-documented trends observed in other organisms, housekeeping processes, including energy metabolism and transport, were significantly enriched in the most highly stable messages. Shorter-lived transcripts included a higher proportion of transcriptional regulation, stress response, and other response/regulatory processes. One such family of proteins involved in post-transcriptional regulation in chloroplasts and mitochondria, the pentatricopeptide repeat (PPR) proteins, had dramatically shorter half-lives when compared to the arrayed transcriptome. As transcript abundances for PPR proteins were previously observed to rapidly increase in response to nutrient addition, we queried the newly synthesized RNA pools at 1 and 4 h following nitrate addition to N-depleted cultures. Transcriptome-wide there was little evidence of increases in the rate of de novo transcription during the first 4 h, relative to that in N-depleted cells, and no evidence for increased PPR protein transcription. These results lend support to the growing consensus of post-transcriptional control of gene expression in dinoflagellates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本实验以冬小麦“农大139”(T. aestivum L. cv. Nongda 139)为材料对春化作用诱导开花的分子机制作了一些探讨,主要结果如下: 1. 应用SDS-PAGE及高分辨双向电泳技术,比较了冬小麦给予春化、脱春化及超期春化处理后的电泳图谱,并结合对春小麦对照样品的分析,结果发现有一些蛋白质和春化作用紧密相关,它们随春化而出现、随脱春化而消失,并在不经低温处理即可以开花的春小麦对照中存在。也就是说,这些开花特异的蛋白质(FSPs)的存在或在诱导下的合成和小麦抽穗开花能力的获得存在一种正相关,因此推测它们在冬小麦由营养生长状态向生殖生长状态转变的过程中起了关键性的作用。 2. 从不同处理的及对照样品中提取mRNA进行体外翻译的结果表明:春化作用过程中低温诱导了mRNA组分的变化,其中一些新产生的mRNA种类与春化诱导的开花能力的获得呈高度相关,即它们是开花特异的(Flower Specific),它们中有的只在春化的特定时期存在并起作用。 3.比较体内分析及体外翻译的结果发现,一些开花特异蛋白质(FSPs)可以同时在体内提取物及体外翻译产物中检测到,因此,春化作用中开花特异蛋白质诱导合成的调节很可能发生在转录水平上。 4.基于以上结果的分析可以推测春化诱导开花是低温导致了开花特异基因表达的结果,超期春化的效应不能被脱春化所逆转则系编码这些开花特异蛋白质的基因在长期低温条件下转变成了组成性表达所致。 有关低温诱导产生的开花特异蛋白质的性质与功能及编码这些蛋白质的基因尚需进一步研究。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文以光敏色素A (phyA)的特异性基因片段RPA3为探针,利用RNA斑点杂交的方法对光敏核不育水稻农垦58S及对照农垦58叶片中phyA mRNA的丰度进行了分析。结果显示:在育性转换敏感期,光周期处理O天时,农垦58S (NK 58S) phyA mR-NA的丰度比农垦58 (NK 58) phyA mRNA的高。光周期处理5天(雌雄蕊原基形成期)及10天(花粉母细胞形成期)时,短日照条件下(SD),NK 58S phyA mRNA的丰度均比NK58高。进一步比较3天龄NK58S及NK58黄化苗中phyA基因表达的差异,发现NK58S phyA mRNA的丰度比NK58高,并且两品种均符合黄化苗中phyA对其mRNA丰度的负调控作用。这一结果进一步证实:甲基化水平低的NK58S phyA基因比NK58 phyA基因更活跃地表达,进而导致转录水平与翻译水平上的差异,最终参与调节NK 58S的育性转换。 另外,通过持续远红光和红光照射黄化水稻幼苗诱导叶绿素合成的实验,分析了NK58S与NK58之间光敏色素生物功能的差异。持续远红光高辐照度反应(FR-HIR)由phyA负责调节,持续红光高辐照度反应(R-HIR)由phyB负责调节。实验结果显示:持续FR使NK58S与NK58合成叶绿素的含量在12 h时达到最高,并且NK58中叶绿素合成的相对效应比NK585高。持续R使NK58S及NK58中叶绿素的含量在24小时连续处理下持续增加,而且在此时间进程中,NK58中叶绿素合成的相对效应也都比NK58S高。这些结果说明在NK58S和NK58中phyA和phyB均参与了叶绿素合成的调节,并且phyA,phyB在NK58S和NK58黄化苗转绿过程中的作用存在差异。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the codon bias and the mRNA secondary structural features of the hemagglutinin (HA) cleavage site basic amino acid regions of avian influenza virus H5N1 subtypes. We have developed a dynamic extended folding strategy to predict RNA secondar