990 resultados para lymphocyte activation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Bahia grass pollen (BaGP) is a major cause of allergic rhinitis. Subcutaneous allergen-specific immunotherapy is effective for grass pollen allergy, but is unsuitable for patients with moderate to severe asthma due to the risk of anaphylaxis. T cell-reactive but IgE nonreactive peptides provide a safer treatment option. This study aimed to identify and characterize dominant CD4+ T cell epitope peptides of the major BaGP allergen, Pas n 1. Methods Pas n 1-specific T cell lines generated from the peripheral blood of BaGP-allergic subjects were tested for proliferative and cytokine response to overlapping 20-mer Pas n 1 peptides. Cross-reactivity to homologous peptides from Lol p 1 and Cyn d 1 of Ryegrass and Bermuda grass pollen, respectively, was assessed using Pas n 1 peptide-specific T cell clones. MHC class II restriction of Pas n 1 peptide T cell recognition was determined by HLA blocking assays and peptide IgE reactivity tested by dot blotting. Results Three Pas n 1 peptides showed dominant T cell reactivity; 15 of 18 (83%) patients responded to one or more of these peptides. T cell clones specific for dominant Pas n 1 peptides showed evidence of species-specific T cell reactivity as well as cross-reactivity with other group 1 grass pollen allergens. The dominant Pas n 1 T cell epitope peptides showed HLA binding diversity and were non-IgE reactive. Conclusions The immunodominant T cell-reactive Pas n 1 peptides are candidates for safe immunotherapy for individuals, including those with asthma, who are allergic to Bahia and possibly other grass pollens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patients with allergic diseases produce an excess of allergen-specific IgE, the specific effector molecule that triggers allergic reactions. The provocation for this excess IgE production is still uncertain. Current ideas include oligoclonal expansion of allergen-specific B cells emanating from germinal centres, activation by superantigen of a subset of B cells, or polyclonal B cells class switching to IgE due to an IL-4 predominance. Additionally, genetic elements contribute to a propensity for increased allergen-specific IgE production. The procedure of RT-PCR allows for amplification of infrequent IgE mRNA transcripts from B cells of atopic individuals, and so facilitates examination of expressed Ig cDNA sequences. Better knowledge of the molecular characteristics of IgE produced by patients with allergic diseases would elucidate the immunogenetic basis for elevated allergen-specific IgE levels. The 'immunogenetic footprint' of IgE transcripts may elucidate the origin and activation of IgE-producing B cells in allergic disease. Here we review studies of the immunogenetic features of IgE in allergic diseases, highlighting the major advances and the experimental limitations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: IgE is the pivotal-specific effector molecule of allergic reactions yet it remains unclear whether the elevated production of IgE in atopic individuals is due to superantigen activation of B cell populations, increased antibody class switching to IgE or oligoclonal allergen-driven IgE responses. Objectives: To increase our understanding of the mechanisms driving IgE responses in allergic disease we examined immunoglobulin variable regions of IgE heavy chain transcripts from three patients with seasonal rhinitis due to grass pollen allergy. Methods: Variable domain of heavy chain-epsilon constant domain 1 cDNAs were amplified from peripheral blood using a two-step semi-nested PCR, cloned and sequenced. Results: The VH gene family usage in subject A was broadly based, but there were two clusters of sequences using genes VH 3-9 and 3-11 with unusually low levels of somatic mutations, 0-3%. Subject B repeatedly used VH 1-69 and subject C repeatedly used VH 1-02, 1-46 and 5a genes. Most clones were highly mutated being only 86-95% homologous to their germline VH gene counterparts and somatic mutations were more abundant at the complementarity determining rather than framework regions. Multiple sequence alignment revealed both repeated use of particular VH genes as well as clonal relatedness among clusters of IgE transcripts. Conclusion: In contrast to previous studies we observed no preferred VH gene common to IgE transcripts of the three subjects allergic to grass pollen. Moreover, most of the VH gene characteristics of the IgE transcripts were consistent with oligoclonal antigen-driven IgE responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The causes of autoimmune diseases have yet to be fully elucidated. Autoantibodies, autoreactive T cell responses, the presence of a predisposing major histocompatibility complex (MHC) haplotype and responsiveness to corticosteroids are features, and some are possibly contributory causes of autoimmune disease. The most challenging question is how autoimmune diseases are triggered. Molecular mimicry of host cell determinants by epitopes of infectious agents with ensuing cross-reactivity is one of the most popular yet still controversial theories for the initiation of autoimmune diseases [1]. Throughout the 1990s, hundreds of research articles focusing to various extents on epitope mimicry, as it is more accurately described in an immunological context, were published annually. Many of these articles presented data that were consistent with the hypothesis of mimicry but that did not actually prove the theory. Other equally convincing reports indicated that epitope mimicry was not the cause of the autoimmune disease despite sequence similarity between molecules of infectious agents and the host. Some 20 years ago, Rothman [2] proposed a model for disease causation and I have used this as a framework to examine the role of epitope mimicry in the development of autoimmune disease. The thesis of Rothman’s model is that an effect, in this instance autoimmune disease, arises as a result of a cause. In most cases, multiple-component causes contribute synergistically to yield the effect, and each of these components alone is insufficient as a cause. Logically, some component causes, such as the presence of a particular autoimmune response, are also necessary causes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shared aetiopathogenic factors among immune-mediated diseases have long been suggested by their co-familiality and co-occurrence, and molecular support has been provided by analysis of human leukocyte antigen (HLA) haplotypes and genome-wide association studies. The interrelationships can now be better appreciated following the genotyping of large immune disease sample sets on a shared SNP array: the 'Immunochip'. Here, we systematically analyse loci shared among major immune-mediated diseases. This reveals that several diseases share multiple susceptibility loci, but there are many nuances. The most associated variant at a given locus frequently differs and, even when shared, the same allele often has opposite associations. Interestingly, risk alleles conferring the largest effect sizes are usually disease-specific. These factors help to explain why early evidence of extensive 'sharing' is not always reflected in epidemiological overlap. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an autoimmune disease with a genetic component, caused at least in part by aberrant lymphocyte activity. The whole blood mRNA transcriptome was measured for 99 untreated MS patients: 43 primary progressive MS, 20 secondary progressive MS, 36 relapsing remitting MS and 45 age-matched healthy controls. The ANZgene Multiple Sclerosis Genetics Consortium genotyped more than 300 000 SNPs for 115 of these samples. Transcription from genes on translational regulation, oxidative phosphorylation, immune synapse and antigen presentation pathways was markedly increased in all forms of MS. Expression of genes tagging T cells was also upregulated (P < 10-12) in MS. A T cell gene signature predicts disease state with a concordance index of 0.79 with age and gender as co-variables, but the signature is not associated with clinical course or disability. The ANZgene genome wide association screen identified two novel regions with genome wide significance: one encoding the T cell co-stimulatory molecule, CD40; the other a region on chromosome 12q13-14. The CD40 haplotype associated with increased MS susceptibility has decreased gene expression in MS (P < 0.0007). The second MS susceptibility region includes 17 genes on 12q13-14 in tight linkage disequilibrium. Of these, only 13 are expressed in leukocytes, and of these the expression of one, FAM119B, is much lower in the susceptibility haplotype (P tdthomlt; 10-14). Overall, these data indicate dysregulation of T cells can be detected in the whole blood of untreated MS patients, and supports targeting of activated T cells in therapy for all forms of MS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Candida yeast species are widespread opportunistic microbes, which are usually innocent opportunists unless the systemic or local defense system of the host becomes compromised. When they adhere on a fertile substrate such as moist and warm, protein-rich human mucosal membrane or biomaterial surface, they become activated and start to grow pseudo and real hyphae. Their growth is intricately guided by their ability to detect surface defects (providing secure hiding , thigmotropism) and nutrients (source of energy, chemotropism). The hypothesis of this work was that body mobilizes both non-specific and specific host defense against invading candidal cells and that these interactions involve resident epithelial cells, rapidly responding non-specific protector neutrophils and mast cells as well as the antigen presenting and responding den-dritic cell lymphocyte plasma cell system. It is supposed that Candida albicans, as a result of dar-winistic pressure, has developed or is utilizing strategies to evade these host defense reactions by e.g. adhering to biomaterial surfaces and biofilms. The aim of the study was to assess the host defense by taking such key molecules of the anti-candidal defense into focus, which are also more or less characteristic for the main cellular players in candida-host cell interactions. As a model for candidal-host interaction, sections of chronic hyperplastic candidosis were used and compared with sections of non-infected leukoplakia and healthy tissue. In this thesis work, neutrophil-derived anti-candidal α-defensin was found in the epithelium, not only diffusely all over in the epithelium, but as a strong α-defensin-rich superficial front probably able to slow down or prevent penetration of candida into the epithelium. Neutrophil represents the main host defence cell in the epithelium, to which it can rapidly transmigrate from the circulation and where it forms organized multicellular units known as microabscesses (study I). Neutrophil chemotactic inter-leukin-8 (IL-8) and its receptor (IL-8R) were studied and were surprisingly also found in the candidal cells, probably helping the candida to keep away from IL-8- and neutrophil-rich danger zones (study IV). Both leukocytes and resident epithelial cells contained TLR2, TLR4 and TLR6 receptors able to recognize candidal structures via utilization of receptors similar to the Toll of the banana fly. It seems that candida can avoid host defence via stimulation of the candida permissive TLR2 instead of the can-dida injurious TLR4 (study V). TLR also provides the danger signal to the immune system without which it will not be activated to specifically respond against candidal antigens. Indeed, diseased sites contained receptor activator of nuclear factor kappa B ligand (RANKL; II study), which is important for the antigen capturing, processing and presenting dendritic cells and for the T lymphocyte activation (study III). Chronic hyperplastic candidosis provides a disease model that is very useful to study local and sys-temic host factors, which under normal circumstances restrain C. albicans to a harmless commensal state, but failure of which in e.g. HIV infection, cancer and aging may lead to chronic infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antigen stimulation of naive T cells in conjunction with strong costimulatory signals elicits the generation of effector and memory populations. Such terminal differentiation transforms naive T cells capable of differentiating along several terminal pathways in response to pertinent environmental cues into cells that have lost developmental plasticity and exhibit heightened responsiveness. Because these cells exhibit little or no need for the strong costimulatory signals required for full activation of naive T cells, it is generally considered memory and effector T cells are released from the capacity to be inactivated. Here, we show that steadystate dendritic cells constitutively presenting an endogenously expressed antigen inactivate fully differentiated memory and effector CD8+ T cells in vivo through deletion and inactivation. These findings indicate that fully differentiated effector and memory T cells exhibit a previously unappreciated level of plasticity and provide insight into how memory and effector T-cell populations may be regulated. © 2008 by The American Society of Hematology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

目的:研究昆明山海棠片对小鼠脾淋巴细胞增殖、活化标志CD69和CD25及细胞因子IL-4及IFN-γ的影响.方法:无菌分离小鼠脾淋巴细胞,加入不同浓度的昆明山海棠溶液,MTT法检测刀豆蛋白A刺激的小鼠脾淋巴细胞增殖;流式细胞仪检测活化标志CD69及CD25;酶联免疫法检测细胞因子IL-4及IFN-γ.结果:昆明山海棠片对脾淋巴细胞增殖活化及分泌均有抑制作用.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To analyse the impact of lack of MHC class II expression on the composition of the peripheral T-cell compartment in man, the expression characteristics of several membrane antigens were examined on peripheral blood lymphocytes (PBL) and cultured T cells derived from an MHC-class-II-deficient patient. No MHC class II expression could be detected on either PBL or activated T cells. Moreover, the expression of MHC class I was reduced both on PBL and in vitro activated T cells compared to the healthy control. However, the reduced expression of CD26 observed on the PBL of the patient was restored after in vitro expansion. Despite the presumably class-II-deficient thymic environment, a distinct but reduced single CD4+ T-cell population was observed in the PBL of the patient. After in vitro expansion, the percentage of CD4+ cells dropped even further, most likely due to a proliferative disadvantage, compared to the single CD8+ T-cell population. However, proliferation analysis showed that T-cell activation via the TcR/CD3 pathway is not affected by the MHC class II deficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurement of antigen-specific T cell responses is an adjunctive parameter to evaluate protection induced by a previous Bordetella pertussis infection or vaccination. The assessment of T cell responses is technically complex and usually performed on fresh peripheral blood mononuclear cells (PBMC). The objective of this study was to identify simplified methods to assess pertussis specific T cell responses and verify if these assays could be performed using frozen/thawed (frozen) PBMC. Three read-outs to measure proliferation were compared: the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution test, the number of blast cells defined by physical parameters, and the incorporation of (3)H-thymidine. The results of pertussis-specific assays performed on fresh PBMC were compared to the results on frozen PBMC from the same donor. High concordance was obtained when the results of CFSE and blast read-outs were compared, an encouraging result since blast analysis allows the identification of proliferating cells and does not require any use of radioactive tracer as well as any staining. The results obtained using fresh and frozen PBMC from the same donor in the different T cell assays, including IFNγ and TNFα cytokine production, did not show significant differences, suggesting that a careful cryopreservation process of PBMC would not significantly influence T cell response evaluation. Adopting blast analysis and frozen PBMC, the possibility to test T cell responses is simplified and might be applied in population studies, providing for new instruments to better define correlates of protection still elusive in pertussis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monoclonal antibodies of the OKT series were used to identify T lymphocytes (OKT3+) and their inducer (OKT4+) and suppressor-cytotoxic (OKT8+) subsets in the peripheral blood mononuclear cells (PBMC) of 32 healthy old-aged people more than 70 years old (16 men and 16 women) compared to 47 adults (29 men, 18 women) less than 40 years old. The absolute lymphocyte count in the peripheral blood was not significantly influenced by age or sex. Both the proportions and the absolute numbers of T3+ and T4+ cells were significantly lower in aged than in young participants. The proportions but not the absolute counts of OKT8+ cells were higher in the elderly. Most interesting is the influence of sex and these parameters. Old women have normal numbers and proportions of T3+, T4+ and T8+ cells when compared to young women. The latter have a significantly higher proportion of T8+ cells than young adult males. Old men have a striking reduction of both the numbers and proportions of OKT3+ and OKT4+ cells when compared with young men and with women. In addition, old men have an elevated proportion, but a normal absolute number, of OKT8+ cells. The responses of PBMC to phytohaemagglutinin extent (PHA), concanavalin A (Con A) and pokeweed mitogen (PWM) are reduced to the same extent in ageing male and female subjects when compared to young adults. In the older group, the magnitude of the lymphocyte response to PHA and Con A but not to PWM is negatively correlated with the proportions of OKT8+ cells. Surprisingly, these correlations are observed only in old women but not in old men. The latter finding excludes the possibility that the age-associated decline of the lymphocyte response to T cell mitogens is secondary to an imbalance between T4+ and T8+ lymphocytes.