993 resultados para life assemblages
Resumo:
O presente estudo teve como objetivo apresentar uma das primeiras contribuições ao conhecimento sobre a fidelidade quantitativa de associações de moluscos recentes em rios subtropicais. Tanatocenoses e biocenoses foram estudadas em seções retilínea e meandrante tendendo a anastomosada, no curso médio do rio Touro Passo, um tributário de 4ª ordem do rio Uruguai, localizado no extremo oeste do Rio Grande do Sul. As amostragens foram realizadas por meio de quadrats de 5 m², cinco em cada seção, amostrando-se um total de 50 m². Também foram feitas amostragens em um ambiente lêntico, com comunicação intermitente com o Touro Passo, objetivando detectar a existência de transporte de comunidades lênticas para o interior do rio. Os resultados obtidos mostram que, apesar da freqüente oscilação do nível da água, a biocenose do Touro Passo apresenta uma alta fidelidade ecológica e sofre pouca influência de espécies de ambientes lênticos. A composição taxonômica e características de estrutura de comunidades, especialmente as espécies dominantes, refletem, ainda, diferenças ecológicas relacionadas às duas seções amostradas, como a maior complexidade de habitats da estação meandrante. Quanto à fidelidade quantitativa, 60% das espécies encontradas vivas também foram encontradas mortas e 47,3% das espécies encontradas mortas também foram encontras vivas em escala de rio. Porém, 72% dos exemplares coletados mortos são representantes de espécies encontradas vivas. Essa percentagem alta pode estar relacionada à boa correlação entre o ranking de dominância das associações vivas e mortas e, conseqüentemente, as espécies dominantes das tanatocenoses podem ser utilizadas para inferir características ecológicas das biocenoses. Todos os índices analisados variaram muito em escala local (quadrat) e seus valores são mais aproximados aos de outros, registrados em estudos prévios, apenas quando analisados em escala mais ampla (seção, área total).
Resumo:
Narrating is simultaneously self-interpretation and self-construction. People make sense of their lives and create their identities through an active process of assembling and applying meaning to memories, experiences, thoughts, actions and passions. Such a process can usefully be described as a bricolage: life narratives are created as an assemblage of scattered experiences and events. Through the particular way in which they are arranged, the storyteller constructs what Paul Ricoeur (1992) calls a “narrative identity”; that is, an identity which is organised through and specific to the story told. Applying this notion of narrative as bricolage to ‘Heywire’ – an Australian youth life storytelling project – this paper discusses the unique affordances that the process of storytelling offers in terms of identity and the way new, digital technologies and the internet augment the features of life narratives. It argues that narrative, in addition to new media, offers important tools through which young people who participate in the Heywire project make sense of personal experiences and craft their own identities in powerful and purposeful ways.
Resumo:
There are 19 economically important reef fish species in the deepwater (l00-300 m) fishery of the southeastern United States. Five species make up the majority (over 97% by weight) of the catch. In descending order of total landings for 1995, they are: tilefish, Lopholatilus chamaeleonticeps, snowy grouper, Epinephelus niveatus, blueline tilefish, Caulolatilus microps, warsaw grouper, Epinephelus nigritus, and yellowedge grouper, E. flavolimbatus. Life history summaries and estimates of catches from 1972 through 1995 for 14 species are described. (PDF file contains 45 pages.)
Resumo:
Aim: This study investigated the use of stable δ13C and δ18O isotopes in the sagittal otolith carbonate of narrow-barred Spanish mackerel, Scomberomorus commerson, as indicators of population structure across Australia. Location: Samples were collected from 25 locations extending from the lower west coast of Western Australia (30°), across northern Australian waters, and to the east coast of Australia (18°) covering a coastline length of approximately 9500 km, including samples from Indonesia. Methods: The stable δ13C and δ18O isotopes in the sagittal otolith carbonate of S. commerson were analysed using standard mass spectrometric techniques. The isotope ratios across northern Australian subregions were subjected to an agglomerative hierarchical cluster analysis to define subregions. Isotope ratios within each of the subregions were compared to assess population structure across Australia. Results: Cluster analysis separated samples into four subregions: central Western Australia, north Western Australia, northern Australia and the Gulf of Carpentaria and eastern Australia. Isotope signatures for fish from a number of sampling sites from across Australia and Indonesia were significantly different, indicating population separation. No significant differences were found in otolith isotope ratios between sampling times (no temporal variation). Main conclusions: Significant differences in the isotopic signatures of S. commerson demonstrate that there is unlikely to be any substantial movement of fish among these spatially discrete adult assemblages. The lack of temporal variation among otolith isotope ratios indicates that S. commerson populations do not undergo longshore spatial shifts in distribution during their life history. The temporal persistence of spatially explicit stable isotopic signatures indicates that, at these spatial scales, the population units sampled comprise functionally distinct management units or separate ‘stocks’ for many of the purposes of fisheries management. The spatial subdivision evident among populations of S. commerson across northern and western Australia indicates that it may be advantageous to consider S. commerson population dynamics and fisheries management from a metapopulation perspective (at least at the regional level).
Resumo:
Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)
Resumo:
English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab
Resumo:
Fish assemblages were investigated in tidal-creek and seagrass habitats in the Suwannee River estuary, Florida. A total of 91,571 fish representing 43 families were collected in monthly seine samples from January 1997 to December 1999. Tidal creeks supported greater densities of fish (3.89 fish/m2; 83% of total) than did seagrass habitats (0.93 fish/m2). We identified three distinct fish assemblages in each habitat: winter−spring, summer, and fall. Pinfish (Lagodon rhomboides), pigfish (Orthopristis chrysoptera), and syngnathids characterized seagrass assemblages, whereas spot (Leiostomus xanthurus), bay anchovy (Anchoa mitchilli), silversides (Menidia spp.), mojarras (Eucinostomus spp.), and fundulids characterized tidal-creek habitats. Important recreational and commercial species such as striped mullet (Mugil cephalus) and red drum (Sciaenops ocellatus) were found primarily in tidal creeks and were among the top 13 taxa in the fish assemblages found in the tidal-creek habitats. Tidal-creek and seagrass habitats in the Suwannee River estuary were found to support diverse fish assemblages. Seasonal patterns in occurrence, which were found to be associated with recruitment of early-life-history stages, were observed for many of the fish species.
Resumo:
The offshore shelf and canyon habitats of the OCNMS are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary.
Resumo:
The structure of intertidal benthic diatoms assemblages in the Tagus estuary was investigated during a 2-year survey, carried out in six stations with different sediment texture. Nonparametric multivariate analyses were used to characterize spatial and temporal patterns of the assemblages and to link them to the measured environmental variables. In addition, diversity and other features related to community physiognomy, such as size-class or life-form distributions, were used to describe the diatom assemblages. A total of 183 diatom taxa were identified during cell counts and their biovolume was determined. Differences between stations (analysis of similarity (ANOSIM), R=0.932) were more evident than temporal patterns (R=0.308) and mud content alone was the environmental variable most correlated to the biotic data (BEST, rho=0.863). Mudflat stations were typically colonized by low diversity diatom assemblages (H' similar to 1.9), mainly composed of medium-sized motile epipelic species (250-1,000 mu m(3)), that showed species-specific seasonal blooms (e.g., Navicula gregaria Donkin). Sandy stations had more complex and diverse diatom assemblages (H' similar to 3.2). They were mostly composed by a large set of minute epipsammic species (<250 mu m(3)) that, generally, did not show temporal patterns. The structure of intertidal diatom assemblages was largely defined by the interplay between epipelon and epipsammon, and its diversity was explained within the framework of the Intermediate Disturbance Hypothesis. However, the spatial distribution of epipelic and epipsammic life-forms showed that the definition of both functional groups should not be over-simplified.
Resumo:
Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We suggest directions to better quantify and monitor future plankton phenology shifts, including (i) examining the main mode of expected future changes (ecological shifts in timing and spatial distribution to accommodate fixed environmental niches vs. evolutionary adaptation of timing controls to maintain fixed biogeography and seasonality), (ii) broader understanding of phenology at the species and community level (e.g. for zooplankton beyond Calanus and for phytoplankton beyond chlorophyll), (iii) improving and diversifying statistical metrics for indexing timing and trophic synchrony and (iv) improved consideration of spatio-temporal scales and the Lagrangian nature of plankton assemblages to separate time from space changes.
Resumo:
Gephyrocapsa oceanica is a cosmopolitan bloom-forming coccolithophore species belonging to the haptophyte order Isochrysidales and family Noëlaerhabdaceae. Exclusively pelagic, G. oceanica is commonly found in modern oceans and in fossil assemblages. Its sister species Emiliania huxleyi is known to possess a haplo-diplontic life cycle, the non-motile diploid coccolith-bearing cells alternating with haploid cells that are motile and covered by non-mineralized organic scales. Since the cytology and ultrastructure of other members of the Noëlaerhabdaceae has never been reported, it is not clear whether these features are common to the family. Here, we report on the ultrastructure of both the non-motile calcifying stage and the non-calcifying motile stage of G. oceanica. We found no significant ultrastructural differences between E. huxleyi and G. oceanica either in the calcifying diploid stage or the haploid phase. The similarities between these two morphospecies demonstrated a high degree of conservation of cytological features. We discuss the significance of these results in the light of the evolution of the Noelaerhabdaceae.
Resumo:
Cannibalism and intraguild predation (IGP) are common amongst freshwater amphipod crustacean aswsemblages, particularly between individuals of different body size, with IGP of smaller by larger species. The decline of Gammarus tigrinus Populations in mainland Europe has been accompanied by the arrival of the Ponto-Caspian invader Dikerogammarus villosus and previous studies have implicated IGP of G. tigrinus by the larger D. villosus as the principal driving force in this replacement. We examined how factors such as microhabitat and body size may mediate both cannibalism within G. tigrinus populations and IGP by D. villosus and thus contribute to field patterns of coexistence and exclusion. A field Survey of an invaded Dutch fake indicated that G. tigrinus and D. villosus differed in distribution. with D. villosus being the numerically dominant amphipod (80-96 %) on the rocky boulder Substrate of the shoreline and G. tigrinus being the dominant amphipod (100 %) in the crushed shell/sand matrix immediately adjacent to this. Laboratory microcosm experiments indicated that G. tigrinus cannibalism, particularly of smaller by larger size classes, may be common. In addition, although D. villosus predation of all G. tigrinus size classes was extreme, the smallest size classes Suffered the highest predation. Indeed, when exposed to D. villosus, predation of larger G. tigrinus was lowest when smaller G. tigrinus were also present. Increasing microhabitat complexity from a simple bare substrate littered with Dreissena polymorpha zebra mussels to a Crushed shell/sand matrix significantly reduced both cannibalism and IGP. Our Study emphasizes the need to consider both life history stages and habitat template, when considering the impacts of biotic interactions and it also emphasizes that complex, interacting factors may be mediating the range expansion of D. villosus.
Resumo:
In this paper I explore connections between women, art education and spatial relations drawing on the Deleuzo-Guattarian concept of machinic assemblage as a useful analytical tool for making sense of the heterogeneity and meshwork of life narratives and their social milieus. In focusing on Mary Bradish Titcomb, a fin-de-sie`cle Bostonian woman who lived and worked in the interface of education and art, moving in between differentiated series of social, cultural and geographical spaces, I challenge an image of narratives as unified and coherent representations of lives and subjects; at the same time I am pointing to their importance in opening up microsociological analyses of deterritorializations and lines of flight. What I argue is that an attention to space opens up paths for an analytics of becomings, and enables the theorization of open processes, multiplicities and nomadic subjectivities in the field of gender and education.
Resumo:
The study of investigating the spatial and temporal variability of macroinvertebrate and their relation to hydrology, hydraulic and environmental factors was done along the Sigi River during two sampling periods in the dry (March) and wet (May) periods of 2012. The river was demarcated based on slope ranges and five river zones were identified as mountains streams (MS), upper foothills (UF), lower foothills (LF), rejuvenated foothills (REJ) and mature lower river (MR). Samples of macroinvertebrate were collected from the five river zones and measurements of hydrological (discharge), hydraulics (Depth, velocity and Froude number) and Environmental (pH, Temperature, substrate, conductivity) parameters were done in each zone. In characterizing the macroinvertebrate assemblages along the Sigi River diversity indices (number of taxa, total abundances, Margalef richness index and ShannonWiener index) were calculated and the most representative species for the spatial and temporal variation were identified. Melanoides and Afronurous showed differences in abundance in two samplings periods while Cleopatra, Potamonautes, Ephemerythus, Neoperla, Caenis, Ceratogomphus and Cheumatopsyche showed significant difference among the river zones. Spearman rank correlation and Distance Linear Model (DistLM) used to revealed physical factors governing the macroinvertebrate assemblages distribution. The study demonstrated that the variation of physical factors like discharge, temperature, conductivity and pH have an important role in the spatial distribution of macroinvertebrate assemblages along the river and the life cycle of macroinvertebrate (Afronurus) is important in determining the temporal variability.
Resumo:
In this thesis, by employing an autoethnographic methodology, I am exploring why certain understandings, or assemblages, of political engagement come to have greater meaning in my life and why other assemblages may be more hidden and thus fail to contribute substantially to the meaning of political in my life. Using immanent, Marxist and post-Marxist theories, as well as a zombie narrative, the study will contextualize the movement of assemblages in my life within late-stage capitalism which is juxtaposed with the zombie apocalypse. The placement and displacement of certain understandings of the political within my life will be theorized within the crisis of constituent power that is revealed in an immanent framework. Furthermore, the crisis of the constituent in late-stage capitalism creates new forms of radical alienation which will also be examined. By exploring my own struggles in becoming political I will theorize why political disengagement in emerging adulthood appears to be increasing, as well as possibilities for new forms of political engagement in a late-stage capitalist context.