879 resultados para left ventricular noncompaction cardiomyopathy
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Patients with left ventricular noncompaction (LVNC) have an increased risk for life-threatening ventricular arrhythmias. The benefit from implantable cardioverter-defibrillators (ICD) in these patients has been investigated only in small series. Therefore, the aim of the present study was to analyze the clinical outcome of a larger population of patients with LVNC who were treated with an ICD.
Resumo:
In hypertension, left ventricular (LV) hypertrophy develops as an adaptive mechanism to compensate for increased afterload and thus preserve systolic function. Associated structural changes such as microvascular disease might potentially interfere with this mechanism, producing pathological hypertrophy. A poorer outcome is expected to occur when LV function is put in jeopardy by impaired coronary reserve. The aim of this study was to evaluate the role of coronary reserve in the long-term outcome of patients with hypertensive dilated cardiomyopathy. Between 1996 and 2000, 45 patients, 30 of them male, with 52 +/- 11 years and LV fractional shortening <30% were enrolled and followed until 2006. Coronary flow velocity reserve was assessed by transesophageal Doppler of the left anterior descending coronary artery. Sixteen patients showed >= 10% improvement in LV fractional shortening after 17 +/- 6 months. Coronary reserve was the only variable independently related to this improvement. Total mortality was 38% in 10 years. The Cox model identified coronary reserve (hazard ratio = 0.814; 95% CI = 0.72-0.92), LV mass, low diastolic blood pressure, and male gender as independent predictors of mortality. In hypertensive dilated cardiomyopathy, coronary reserve impairment adversely affects survival, possibly by interfering with the improvement of LV dysfunction. J Am Soc Hypertens 2010;4(1):14-21. (C) 2010 American Society of Hypertension. All rights reserved.
Resumo:
Aims: To assess whether contractile reserve during dobutamine stress echocardiography (DSE) can predict left ventricular functional recovery in patients with peripartum cardiomyopathy and to assess myocardial fibrosis by magnetic resonance imaging (MRI) in these patients. Methods: Nine patients with peripartum cardiomyopathy were enrolled. All patients underwent DSE and were followed for six months, when a rest Doppler echocardiogram was repeated. MRI was also performed at the beginning of follow-up to identify myocardial fibrosis. Results: Mean age was 29 +/- 7.9 years and mean left ventricular ejection fraction at baseline was 39.4 +/- 8.6% (range 24-49%). Eight of the nine patients showed left ventricular functional recovery with mean ejection fraction at follow-up of 57.1 +/- 13.8%. The ejection fraction response to DSE did not predict recovery at follow-up. On the other hand, left ventricular ejection fraction at baseline correlated with ejection fraction at follow-up. Mild fibrosis was detected in only one patient. Conclusion: Left ventricular ejection fraction at baseline was a predictor of left ventricular functional recovery in patients with peripartum cardiomyopathy. Dobutamine stress echocardiography at presentation of the disease did not predict recovery at follow-up. Myocardial fibrosis appeared to be uncommon in this cardiomyopathy. (C) 2011 Sociedade Portuguesa de Cardiologia Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Background-Amyloidotic cardiomyopathy (AC) can mimic true left ventricular hypertrophy (LVH), including hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD). We assessed the diagnostic value of combined electrocardiographic/echocardiographic indexes to identify AC among patients with increased echocardiographic LV wall thickness due to either different etiologies of amyloidosis or HCM or HHD. Method-First, we studied 469 consecutive patients: 262 with biopsy/genetically proven AC (with either AL or transthyretin (TTR)-related amyloidosis); 106 with HCM; 101 with HHD. We compared the diagnostic performance of: low QRS voltage, symmetric LVH, low QRS voltage plus interventricular septal thickness >1.98 cm, Sokolow index divided by the cross-sectional area of LV wall, Sokolow index divided by body surface area indexed LV mass (LVMI), Sokolow index divided by LV wall thickness, Sokolow index divided by (LV wall/height^2.7); peripheral QRS score divided by LVMI, Peripheral QRS score divided by LV wall thickness, Peripheral QRS score divided by LV wall thickness indexed to height^2.7, total QRS score divided by LVMI, total QRS score divided by LV wall thickness; total QRS score divided by (LV wall/height^2.7). We tested each criterion, separately in males and females, in the following settings: AC vs. HCM+HHD; AC vs. HCM; AL vs. HCM+HHD; AL vs. HCM; TTR vs. HCM+HHD; TTR vs. HCM. Results-Low QRS voltage showed high specificity but low sensitivity for the identification of AC. All the combined indexes had a higher diagnostic accuracy, being total QRS score divided by LV wall thickness or by LVMI associated with the best performances and the largest areas under the ROC curve. These results were validated in 298 consecutive patients with AC, HCM or HHD. Conclusions-In patients with increased LV wall thickness, a combined ECG/ echocardiogram analysis provides accurate indexes to non-invasively identify AC. Total QRS score divided by LVMI or LV wall thickness offers the best diagnostic performance.
Resumo:
Background: Hypertrophic cardiomyopathy (HCM) is a common cardiac disease caused by a range of genetic and acquired disorders. The most common cause is genetic variation in sarcomeric proteins genes. Current ESC guidelines suggest that particular clinical features (‘red flags’) assist in differential diagnosis. Aims: To test the hypothesis that left ventricular (LV) systolic dysfunction in the presence of increased wall thickness is an age-specific ‘red flag’ for aetiological diagnosis and to determine long-term outcomes in adult patients with various types of HCM. Methods: A cohort of 1697 adult patients with HCM followed at two European referral centres were studied. Aetiological diagnosis was based on clinical examination, cardiac imaging and targeted genetic and biochemical testing. Main outcomes were: all-cause mortality or heart transplantation (HTx) and heart failure (HF) related-death. All-cause mortality included sudden cardiac death or equivalents, HF and stroke-related death and non-cardiovascular death. Results: Prevalence of different aetiologies was as follows: sarcomeric HCM 1288 (76%); AL amyloidosis 115 (7%), hereditary TTR amyloidosis 86 (5%), Anderson-Fabry disease 85 (5%), wild-type TTR amyloidosis 48 (3%), Noonan syndrome 15 (0.9%), mitochondrial disease 23 (1%), Friedreich’s ataxia 11 (0.6%), glycogen storage disease 16 (0.9%), LEOPARD syndrome 7 (0.4%), FHL1 2 (0.1%) and CPT II deficiency 1 (0.1%). Systolic dysfunction at first evaluation was significantly more frequent in phenocopies than sarcomeric HCM [105/409 (26%) versus 40/1288 (3%), (p<0.0001)]. All-cause mortality/HTx and HF-related death were higher in phenocopies compared to sarcomeric HCM (p<0.001, respectively). When considering specific aetiologies, all-cause mortality and HF-related death were higher in cardiac amyloidosis (p<0.001, respectively). Conclusion: Systolic dysfunction at first evaluation is more common in phenocopies compared to sarcomeric HCM representing an age-specific ‘red flag’ for differential diagnosis. Long-term prognosis was more severe in phenocopies compared to sarcomeric HCM and when comparing specific aetiologies, cardiac amyloidosis showed the worse outcomes.
Resumo:
BACKGROUND: Transient left ventricular apical ballooning syndrome (TLVABS) is an acute cardiac syndrome mimicking ST-segment elevation myocardial infarction characterized by transient wall-motion abnormalities involving apical and mid-portions of the left ventricle in the absence of significant obstructive coronary disease. METHODS: Searching the MEDLINE database 28 case series met the eligibility criteria and were summarized in a narrative synthesis of the demographic characteristics, clinical features and pathophysiological mechanisms. RESULTS: TLVABS is observed in 0.7-2.5% of patients with suspected ACS, affects women in 90.7% (95% CI: 88.2-93.2%) with a mean age ranging from 62 to 76 years and most commonly presents with chest pain (83.4%, 95% CI: 80.0-86.7%) and dyspnea (20.4%, 95% CI: 16.3-24.5%) following an emotionally or physically stressful event. ECG on admission shows ST-segment elevations in 71.1% (95% CI: 67.2-75.1%) and is accompanied by usually mild elevations of Troponins in 85.0% (95% CI: 80.8-89.1%). Despite dramatic clinical presentation and substantial risk of heart failure, cardiogenic shock and arrhythmias, LVEF improved from 20-49.9% to 59-76% within a mean time of 7-37 days with an in-hospital mortality rate of 1.7% (95% CI: 0.5-2.8%), complete recovery in 95.9% (95% CI: 93.8-98.1%) and rare recurrence. The underlying etiology is thought to be based on an exaggerated sympathetic stimulation. CONCLUSION: TLVABS is a considerable differential diagnosis in ACS, especially in postmenopausal women with a preceding stressful event. Data on longterm follow-up is pending and further studies will be necessary to clarify the etiology and reach consensus in acute and longterm management of TLVABS.
Resumo:
Tissue Doppler (TD) assessment of dysynchrony (DYS) is established in evaluation for bi-ventricular pacing. Time to regional minimal volume by real-time 3D echo (3D) has been applied to DYS. 3D offers simultaneous assessment of all segments and may limit errors in localization of maximum delay due to off-axis images.We compared TD and 3D for assessment of DYS. 27 patients with ischaemic cardiomyopathy (aged 60±11 years, 85% male) underwent TD with generation of regional velocity curves. The interval between QRS onset and maximal systolic velocity (TTV) was measured in 6 basal and 6 mid-cavity segments. Onthe same day,3Dwas performed and data analysed offline with Q-Lab software (Philips, Andover, MA). Using 12 analogous regional time-volume curves time to minimal volume (T3D)was calculated. The standard deviation (S.D.) between segments in TTV and T3D was calculated as a measure ofDYS. In 7 patients itwas not possible to measureT3D due to poor images. In the remaining 20, LV diastolic volume, systolic volume and EF were 128±35 ml, 68±23 ml and 46±13%, respectively. Mean TTV was less than mean T3D (150±33ms versus 348±54 ms; p < 0.01). The intrapatient range was 20–210ms for TTV and 0–410ms for T3D. Of 9 patients (45%) with significantDYS (S.D. TTV > 32 ms), S.D. T3D was 69±37ms compared to 48±34ms in those without DYS (p = ns). In DYS patients there was concordance of the most delayed segment in 4 (44%) cases.Therefore, different techniques for assessing DYS are not directly comparable. Specific cut-offs for DYS are needed for each technique.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective - To determine effects of reducing the diameter of the left ventricle of dogs by plication of the left ventricular free wall. Animals - 8 healthy adult mixed-breed dogs. Procedure - Left lateral thoracotomy and a T-shaped pericardiotomy were performed. The free wall of the left ventricle was imbricated with 3 interrupted transfixing sutures applied in a horizontal mattress pattern, using 3-0 polypropylene suture assembled on a straight cutting needle. Surgeons were careful to avoid the coronary vessels. Echocardiography was performed 24 hours before and 48 hours after surgery. Electrocardiography was performed before and 1, 2, 7, 15, 21, 30, and 60 days after surgery. Results - Echocardiographic measurements revealed that the diameter of the left ventricle was reduced by a mean of 23.5%. Electrocardiography revealed ventricular premature complexes 24 hours after surgery that regressed without treatment during the first week after surgery. Conclusions and Clinical Relevance - Plication of the left ventricular free wall of dogs can reduce end-diastolic and end-systolic dimensions of the left ventricle. The technique is simple and does not require cardiopulmonary bypass. According to Laplace's law, the reduction of cardiac diameter leads to reduction on free-wall tension and may improve left ventricular function in dilatated hearts. Thus, additional studies involving dogs with dilated cardiomyopathy should be conducted.
Resumo:
Background: Performing a coronary angiography in patients with heart failure of unknown etiology is often justified by the diagnostic assessment of ischemic heart disease. However, the clinical benefit of this strategy is not known. Objective: To evaluate the prevalence of ischemic heart disease by angiographic criteria in patients with heart failure and reduced ejection fraction of unknown etiology, as well as its impact on therapy decisions. Methods: Consecutive outpatients with heart failure and systolic dysfunction, who had an indication for coronary angiography to clarify the etiology of heart disease were assessed from 1 January 2009 to December 31, 2010. Patients diagnosed with coronary artery disease, positive serology for Chagas disease, congenital heart disease, valve disease or patients undergoing cardiac transplantation were excluded from the analysis. The sample was divided into two groups according to the indication for catheterization. Group-1: Symptomatic due to angina or heart failure. Group-2: Presence of >= 2 risk factors for coronary artery disease Results: One hundred and seven patients were included in the analysis, with 51 (47.7%) patients in Group 1 and 56 (52.3%) in Group 2. The prevalence of ischemic heart disease was 9.3% (10 patients), and all belonged to Group 1 (p = 0.0001). During follow-up, only 4 (3.7%) were referred for CABG; 3 (2.8%) patients had procedure-related complications. Conclusion: In our study, coronary angiography in patients with heart failure and systolic dysfunction of unknown etiology, although supported by current guidelines, did not show benefits when performed only due to the presence of risk factors for coronary artery disease. (Arq Bras Cardiol 2012;98(5):437-441)