4 resultados para lactitol
Resumo:
In vitro fermentations were carried out by using a model of the human colon to simulate microbial activities of lower gut bacteria. Bacterial populations (and their metabolic products) were evaluated under the effects of various fermentable substrates. Carbohydrates tested were polydextrose, lactitol, and fructo-oligosaccharide (FOS). Bacterial groups of interest were evaluated by fluorescence in situ hybridization as well as by species-specific PCR to determine bifidobacterial species and percent-G+C profiling of the bacterial communities present. Short-chain fatty acids (SCFA) produced during the fermentations were also evaluated. Polydextrose had a stimulatory effect upon colonic bifidobacteria at concentrations of 1 and 2% (using a single and pooled human fecal inoculum, respectively). The bifidogenic effect was sustained throughout all three vessels of the in vitro system (P = 0.01 seen in vessel 3), as corroborated by the bacterial community profile revealed by %G+C analysis. This substrate supported a wide variety of bifidobacteria and was the only substrate where Bifidobacterium infantis was detected. The fermentation of lactitol had a deleterious effect on both bifidobacterial and bacteroides populations (P = 0.01) and decreased total cell numbers. SCFA production was stimulated, however, particularly butyrate (beneficial for host colonocytes). FOS also had a stimulatory effect upon bifidobacterial and lactobacilli populations that used a single inoculum (P = 0.01 for all vessels) as well as a bifidogenic effect in vessels 2 and 3 (P = 0.01) when a pooled inoculum was used. A decrease in bifidobacteria throughout the model was reflected in the percent-G+C profiles.
Resumo:
Seeking a greater appreciation of cheese whey was developed to process the hydrogenation of lactose for the production of lactitol, a polyol with high added value, using the catalyst Ni / activated carbon (15% and 20% nickel), the nitride Mo2N, the bimetallic carbide Ni-Mo/ activated carbon and carbide Mo2C. After synthesis, the prepared catalysts were analyzed by MEV, XRD, laser granulometry and B.E.T. The reactor used in catalytic hydrogenation of lactose was the type of bed mud with a pressure (68 atm), temperature (120 oC) and stirring speed (500 rpm) remained constant during the experiments. The system operated in batch mode for the solid and liquid and semi-continuous to gas. Besides the nature of the catalyst, we studied the influence of pH of reaction medium for Mo2C carbide as well as evaluating the character of the protein inhibitor and chloride ions on the activity of catalysts Ni (20%)/Activated Carbon and bimetallic carbide Ni-Mo/Activated Carbon. The decrease in protein levels was performed by coagulation with chitosan and adsorption of chloride ions was performed by ion exchange resins. In the process of protein adsorption and chloride ions, the maximum percentage extracted was about 74% and 79% respectively. The micrographs of the powders of Mo2C and Mo2N presented in the form of homogeneous clusters, whereas for the catalysts supported on activated carbon, microporous structure proved impregnated with small particles indicating the presence of metal. The results showed high conversion of lactose to lactitol 90% for the catalyst Ni (20%)/Activated Carbon at pH 6 and 46% for the carbide Mo2C pH 8 (after addition of NH4OH) using the commercial lactose. Monitoring the evolution of the constituents present in the reaction medium was made by liquid chromatography. A kinetic model of heterogeneous Langmuir Hinshelwood type was developed which showed that the estimated constants based catalysts promoted carbide and nitride with a certain speed the adsorption, desorption and production of lactitol
Resumo:
Oral supplements of arginine and citrulline increase local nitric oxide (NO production in the small intestine and this may be harmful under certain circumstances. Gastrointestinal toxicity was therefore reviewed with respect to the intestinal physiology of arginine, citrulline, ornithine, and cystine (which shares the same transporter) and the many clinical trials of supplements of the dibasic amino acids or N-acetylcysteine (NAC. The human intestinal dibasic amino acid transport system has high affinity and low capacity. L-Arginine (but not lysine, ornithine, or D-arginine) induces water and electrolyte secretion that is mediated by NO, which acts as an absorbagogue at low levels and as a secretagogue at high levels. The action of many laxatives is NO mediated and there are reports of diarrhea following oral administration of arginine or ornithine ihine. The clinical data cover a wide span of arginine intakes f rom 3 g/d to > 100 g/d, but the standard of reporting adverse effects (e.g. nausea, vomiting, and diarrhea) was variable. Single doses of 3-6 g rarely provoked side effects and healthy athletes appeared to be more susceptible than diabetic patients to gastrointestinal symptoms at individual doses >9 g. This may relate to an effect of disease on gastrointestinal motility and pharmacokinetics. Most side effects of arginine and NAC occurred at single doses of >9 g in adults >140 mg/kg) often when part of a daily regime of similar to>30 g/d (>174 mmol/d). In the case of arginine, this compares with the laxative threshold of the nonabsorbed disaccharide alcohol, lactitol (74 g or 194 mmol). Adverse effects seemed dependent on the dosage regime and disappeared if divided doses were ingested (unlike lactitol). Large single doses of poorly absorbed amino acids seem to provoke diarrhea. More research is needed to refine dosage strategies that reduce this phenomenon. It is suggested that dipeptide forms of arginine may meet this criterion.
Resumo:
Today’s pet food industry is growing rapidly, with pet owners demanding high-quality diets for their pets. The primary role of diet is to provide enough nutrients to meet metabolic requirements, while giving the consumer a feeling of well-being. Diet nutrient composition and digestibility are of crucial importance for health and well being of animals. A recent strategy to improve the quality of food is the use of “nutraceuticals” or “Functional foods”. At the moment, probiotics and prebiotics are among the most studied and frequently used functional food compounds in pet foods. The present thesis reported results from three different studies. The first study aimed to develop a simple laboratory method to predict pet foods digestibility. The developed method was based on the two-step multi-enzymatic incubation assay described by Vervaeke et al. (1989), with some modification in order to better represent the digestive physiology of dogs. A trial was then conducted to compare in vivo digestibility of pet-foods and in vitro digestibility using the newly developed method. Correlation coefficients showed a close correlation between digestibility data of total dry matter and crude protein obtained with in vivo and in vitro methods (0.9976 and 0.9957, respectively). Ether extract presented a lower correlation coefficient, although close to 1 (0.9098). Based on the present results, the new method could be considered as an alternative system of evaluation of dog foods digestibility, reducing the need for using experimental animals in digestibility trials. The second parte of the study aimed to isolate from dog faeces a Lactobacillus strain capable of exert a probiotic effect on dog intestinal microflora. A L. animalis strain was isolated from the faeces of 17 adult healthy dogs..The isolated strain was first studied in vitro when it was added to a canine faecal inoculum (at a final concentration of 6 Log CFU/mL) that was incubated in anaerobic serum bottles and syringes which simulated the large intestine of dogs. Samples of fermentation fluid were collected at 0, 4, 8, and 24 hours for analysis (ammonia, SCFA, pH, lactobacilli, enterococci, coliforms, clostridia). Consequently, the L. animalis strain was fed to nine dogs having lactobacilli counts lower than 4.5 Log CFU per g of faeces. The study indicated that the L animalis strain was able to survive gastrointestinal passage and transitorily colonize the dog intestine. Both in vitro and in vivo results showed that the L. animalis strain positively influenced composition and metabolism of the intestinal microflora of dogs. The third trail investigated in vitro the effects of several non-digestible oligosaccharides (NDO) on dog intestinal microflora composition and metabolism. Substrates were fermented using a canine faecal inoculum that was incubated in anaerobic serum bottles and syringes. Substrates were added at the final concentration of 1g/L (inulin, FOS, pectin, lactitol, gluconic acid) or 4g/L (chicory). Samples of fermentation fluid were collected at 0, 6, and 24 hours for analysis (ammonia, SCFA, pH, lactobacilli, enterococci, coliforms). Gas production was measured throughout the 24 h of the study. Among the tested NDO lactitol showed the best prebiotic properties. In fact, it reduced coliforms and increased lactobacilli counts, enhanced microbial fermentation and promoted the production of SCFA while decreasing BCFA. All the substrates that were investigated showed one or more positive effects on dog faecal microflora metabolism or composition. Further studies (in particular in vivo studies with dogs) will be needed to confirm the prebiotic properties of lactitol and evaluate its optimal level of inclusion in the diet.