914 resultados para interval time-varying delays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new design method of H∞ filtering for nonlinear large-scale systems with interconnected time-varying delays. The interaction terms with interval time-varying delays are bounded by nonlinear bounding functions including all states of the subsystems. A stable linear filter is designed to ensure that the filtering error system is exponentially stable with a prescribed convergence rate. By constructing a set of improved Lyapunov functions and using generalized Jensen inequality, new delay-dependent conditions for designing H∞ filter are obtained in terms of linear matrix inequalities. Finally, an example is provided to illustrate the effectiveness of the proposed result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study considers the problem of stability analysis of discrete-time two-dimensional (2D) Roesser systems with interval time-varying delays. New 2D finite-sum inequalities, which provide a tighter lower bound than the existing ones based on 2D Jensen-type inequalities, are first developed. Based on an improved Lyapunov-Krasovskii functional, the newly derived inequalities are then utilised to establish delay-range-dependent linear matrix inequality-based stability conditions for a class of discrete time-delay 2D systems. The effectiveness of the obtained results is demonstrated by numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with the delay-range-dependent stability analysis for neural networks with time-varying delay and Markovian jumping parameters. The time-varying delay is assumed to lie in an interval of lower and upper bounds. The Markovian jumping parameters are introduced in delayed neural networks, which are modeled in a continuous-time along with finite-state Markov chain. Moreover, the sufficient condition is derived in terms of linear matrix inequalities based on appropriate Lyapunov-Krasovskii functionals and stochastic stability theory, which guarantees the globally asymptotic stable condition in the mean square. Finally, a numerical example is provided to validate the effectiveness of the proposed conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the problem of passivity analysis of neural networks with an interval time-varying delay. Unlike existing results in the literature, the time-delay considered in this paper is subjected to interval time-varying without any restriction on the rate of change. Based on novel refined Jensen inequalities and by constructing an improved Lyapunov-Krasovskii functional (LKF), which fully utilizes information of the neuron activation functions, new delay-dependent conditions that ensure the passivity of the network are derived in terms of tractable linear matrix inequalities (LMIs) which can be effectively solved by various computational tools. The effectiveness and improvement over existing results of the proposed method in this paper are illustrated through numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some results on the global exponential stabilization for neural networks with various activation functions and time-varying continuously distributed delays. Based on augmented time-varying Lyapunov-Krasovskii functionals, new delay-dependent conditions for the global exponential stabilization are obtained in terms of linear matrix inequalities. A numerical example is given to illustrate the feasibility of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the problem of designing an observer-based output feedback controller to exponentially stabilize a class of linear systems with an interval time-varying delay in the state vector. The delay is assumed to vary within an interval with known lower and upper bounds. The time-varying delay is not required to be differentiable, nor should its lower bound be zero. By constructing a set of Lyapunov–Krasovskii functionals and utilizing the Newton–Leibniz formula, a delay-dependent stabilizability condition which is expressed in terms of Linear Matrix Inequalities (LMIs) is derived to ensure the closed-loop system is exponentially stable with a prescribed α-convergence rate. The design of an observerbased output feedback controller can be carried out in a systematic and computationally efficient manner via the use of an LMI-based algorithm. A numerical example is given to illustrate the design procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the H∞ control problem of neural networks with time-varying delays. The system under consideration is subject to time-varying delays and various activation functions. Based on constructing some suitable Lyapunov-Krasovskii functionals, we establish new sufficient conditions for H∞ control for two cases of time-varying delays: (1) the delays are differentiable and have an upper bound of the delay-derivatives and (2) the delays are bounded but not necessary to be differentiable. The derived conditions are formulated in terms of linear matrix inequalities, which allow simultaneous computation of two bounds that characterize the exponential stability rate of the solution. Numerical examples are given to illustrate the effectiveness of our results.