986 resultados para intermittent-sprint exercise


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effects of 6 mg-kg-1 caffeine ingestion in team-sport players (N.=10) on repeated-sprint running performance (5 sets of 6 x 20 m) and reaction times, 60 min after caffeine or placebo ingestion. Methods. Best single sprint and total set sprint times, blood lactate and simple and choice reaction times (RT) were measured. Total sprint times across sets 1, 3 and 5 (departure every 25 s) were significantly faster after caffeine (85.49±5.55 s) than placebo (86.98±5.78 s) (P<0.05). Similarly, total sprint times across sets 2 and 4 (departure every 60 s), were significantly faster after caffeine (55.99±3.64 s) than placebo (56.77±3.74 s) (P<0.05). Significantly higher blood lactates were recorded in caffeine compared to placebo after set 3 (13.1±1.2 vs 10.3±1.4 mmolL ') (P<0.05) and set 5 (13.1±1.3 vs 103±1.6 mmol-L"1) (P<0.01). There were no significant effects on simple or choice RT, although effect sizes suggested improved post-exercise times after caffeine. Caffeine ingestion 60 min prior to exercise can enhance repeated sprint running performance and is not detrimental to reaction times. [PUBLICATION ABSTRACT]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Light-load exercise training with blood flow restriction (BFR) increases muscle strength and size. However, the hemodynamics of BFR exercise appear elevated compared with non-BFR exercise. This questions the suitability of BFR in special/clinical populations. Nevertheless, hemodynamics of standard prescription protocols for BFR and traditional heavy-load exercise have not been compared. We investigated the hemodynamics of two common BFR exercise methods and two traditional resistance exercises. Twelve young males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (a) heavy load [HL; 80% one-repetition maximum (1-RM)]; (b) light load (LL; 20% 1-RM); and two other light-load trials with BFR applied (c) continuously at 80% resting systolic blood pressure (BFR-C) or (d) intermittently at 130% resting systolic blood pressure (BFR-I). Hemodynamics were measured at baseline, during exercise, and for 60-min post-exercise. Exercising heart rate, blood pressure, cardiac output, and rate–pressure product were significantly greater for HL and BFR-I compared with LL. The magnitude of hemodynamic stress for BFR-C was between that of HL and LL. These data show reduced hemodynamics for continuous low-pressure BFR exercise compared with intermittent high-pressure BFR in young healthy populations. BFR remains a potentially viable method to improve muscle mass and strength in special/clinical populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The study's purpose was to assess the effectiveness of a short-duration three-times-weekly high-load resistive exercise program on preventing deterioration in neuromuscular function after prolonged bed rest. METHODS: Twenty-four male subjects performed high-load resistive exercise (n = 8), high-load resistive exercise with whole-body vibration (n = 9), or no exercise (control, n = 9) during 60-d head-down tilt bed rest as part of the 2nd Berlin Bed Rest Study. Peak countermovement jump power and height, sit-to-stand performance, sprint time over 15 and 30 m, and leg press one-repetition maximum were measured before and after bed rest. RESULTS: The exercise interventions were capable of ameliorating losses of peak countermovement jump power (P < 0.001) and height (P < 0.001), deterioration of sit-to-stand time from 45-cm (P = 0.034) and 30-cm (P < 0.001) sitting positions, increases of 15-m (P = 0.037) and 30-m (P = 0.005) sprint time, and losses of leg press one-repetition maximum (P < 0.001). CONCLUSIONS: The short-duration (6-min time under tension per training session) exercise countermeasure program performed three times a week was capable of reducing the effect of prolonged bed rest on many neuromuscular function measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: This study investigated the efficacy of an intermittent critical power model, termed the "work-balance" (W'BAL) model, during high-intensity exercise in hypoxia. METHODS: Eleven trained, male cyclists (mean ± SD; age 27 ± 6.6 yr, V[Combining Dot Above]O2peak 4.79 ± 0.56 L.min) completed a maximal ramp test and a 3 min "all-out" test to determine critical power (CP) and work performed above CP (W'). On another day an intermittent exercise test to task failure was performed. All procedures were performed in normoxia (NORM) and hypoxia (HYPO; FiO2 ≈ 0.155) in a single-blind, randomized and counter-balanced experimental design. The W'BAL model was used to calculate the minimum W' (W'BALmin) achieved during the intermittent test. W'BALmin in HYPO was also calculated using CP + W' derived in NORM (N+H). RESULTS: In HYPO there was an 18% decrease in V[Combining Dot Above]O2peak (4.79 ± 0.56 vs 3.93 ± 0.47 L.min ; P<0.001) and a 9% decrease in CP (347 ± 45 vs 316 ± 46 W; P<0.001). No significant change for W' occurred (13.4 ± 3.9 vs 13.7 ± 4.9 kJ; P=0.69; NORM vs HYPO). The change in V[Combining Dot Above]O2peak was significantly correlated with the change in CP (r = 0.72; P=0.01). There was no difference between NORM and HYPO for W'BALmin (1.1 ± 0.9 kJ vs 1.2 ± 0.6 kJ). The N+H analysis grossly overestimated W'BALmin (7.8 ± 3.4 kJ) compared with HYPO (P<0.001). CONCLUSION: The W'BAL model produced similar results in hypoxia and normoxia, but only when model parameters were determined under the same environmental conditions as the performance task. Application of the W'BAL model at altitude requires a modification of the model, or that CP and W' are measured at altitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance (i.e. number of vertical jumps performed to a fixed jump height) of an intermittent vertical jump exercise, and (b) to determine the ability of RPE to describe the physiological demand of such exercise. Eight healthy men performed intermittent vertical jumps with rest periods of 4, 5, and 6s until fatigue. Heart rate and RPE were recorded every five jumps throughout the sessions. The number of vertical jumps performed was also recorded. Random coefficient growth curve analysis identified relationships between the number of vertical jumps and both RPE and heart rate for which there were similar slopes. In addition, there were no differences between individual slopes and the mean slope for either RPE or heart rate. Moreover, RPE and number of jumps were highly correlated throughout all sessions (r=0.97-0.99; P0.001), as were RPE and heart rate (r=0.93-0.97; P0.001). The findings suggest that RPE can both predict the performance of intermittent vertical jump exercise and describe the physiological demands of such exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to test if the critical power model can be used to determine the critical rest interval (CRI) between vertical jumps. Ten males performed intermittent countermovement jumps on a force platform with different resting periods (4.1 +/- 0.3 s, 5.0 +/- 0.4 s, 5.9 +/- 0.6 s). Jump trials were interrupted when participants could no longer maintain 95% of their maximal jump height. After interruption, number of jumps, total exercise duration and total external work were computed. Time to exhaustion (s) and total external work (J) were used to solve the equation Work = a + b . time. The CRI (corresponding to the shortest resting interval that allowed jump height to be maintained for a long time without fatigue) was determined dividing the average external work needed to jump at a fixed height (J) by b parameter (J/s). in the final session, participants jumped at their calculated CRI. A high coefficient of determination (0.995 +/- 0.007) and the CRI (7.5 +/- 1.6 s) were obtained. In addition, the longer the resting period, the greater the number of jumps (44 13, 71 28, 105 30, 169 53 jumps; p<0.0001), time to exhaustion (179 +/- 50, 351 +/- 120, 610 +/- 141, 1,282 +/- 417 s; p<0.0001) and total external work (28.0 +/- 8.3, 45.0 +/- 16.6, 67.6 +/- 17.8, 111.9 +/- 34.6 kJ; p<0.0001). Therefore, the critical power model may be an alternative approach to determine the CRI during intermittent vertical jumps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

5-Aminolevulinic acid (ALA), a heme precursor that accumulates in acute intermittent porphyria patients and lead-exposed individuals, has previously been shown to autoxidize with generation of reactive oxygen species and to cause in vitro oxidative damage to rat liver mitochondria. We now demonstrate that chronically ALA-treated rats (40 mg/kg body wt every 2 days for 15 days) exhibit decreased mitochondrial enzymatic activities (superoxide dismutase, citrate synthase) in liver and soleus (type I, red) and gastrocnemius (type IIb, white) muscle fibers. Previous adaptation of rats to endurance exercise, indicated by augmented (cytosolic) CuZn-superoxide dismutase (SOD) and (mitochondrial) Mn-SOD activities in several organs, does not protect the animals against liver and soleus mitochondrial damage promoted by intraperitoneal injections of ALA. This is suggested by loss of citrate synthase and Mn-SOD activities and elevation of serum lactate levels, concomitant to decreased glycogen content in soleus and the red portion of gastrocnemius (type IIa) fibers of both sedentary and swimming-trained ALA-treated rats. In parallel, the type IIb gastrocnemius fibers, which are known to obtain energy mainly by glycolysis, do not undergo these biochemical changes. Consistently, ALA-treated rats under swimming training reach fatigue significantly earlier than the control group. These results indicate that ALA may be an important prooxidant in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the possible influence of different levels of aerobic fitness (VO2MAX) on the parameters of the running anaerobic sprint test (RAST). Thirty-eight subjects (Age = 18.1 ± 2.5 years, Height = 173 ± 1 cm and Body mass = 65.1 ± 6.5 kg) were classified into two groups, low and high aerobic fitness (LAF: n = 22 and HAF: n = 16). The VO2MAX was determined by an incremental exercise performed until exhaustion. The RAST was composed of six maximal efforts of 35m separated by 10s passive recovery. The VO2MAX was significantly different between groups (LAF = 51.7 ± 1.9 mL.kg -1.min-1; HAF = 58.6 ± 3.1 mL.kg -1.min-1). The mean power (MP) was significantly higher in the LAF (552.7 ± 132.1 W) in relation to the HAF group (463.6 ± 132.8 W). The impulse (ImP) was significantly correlated with the VO 2MAX in HAF. It can be concluded that there is an indication that the aerobic metabolism exerts an influence on the completion of RAST.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)