997 resultados para integren-linked kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrin-linked kinase (ILK) and p38MAPK are protein kinases that transduce extracellular signals regulating cell migration and actin cytoskeletal organization. ILK-dependent regulation of p38MAPK is critical for mammalian kidney development and in smooth muscle cell migration, however, specific p38 isoforms has not been previously examined in ILK-regulated responses. Signaling by ILK and p38MAPK is often dysregulated in bladder cancer, and here we report a strong positive correlation between protein levels of ILK and p38β, which is the predominant isoform found in bladder cancer cells, as well as in patient-matched normal bladder and tumor samples. Knockdown by RNA interference of either p38β or ILK disrupts serum-induced, Rac1-dependent migration and actin cytoskeletal organization in bladder cancer cells. Surprisingly, ILK knockdown causes the selective reduction in p38β cellular protein level, without inhibiting p38β messenger RNA (mRNA) expression. The loss of p38β protein in ILK-depleted cells is partially rescued by the 26S proteasomal inhibitor MG132. Using co-precipitation and bimolecular fluorescent complementation assays, we find that ILK selectively forms cytoplasmic complexes with p38β. In situ proximity ligation assays further demonstrate that serum-stimulated assembly of endogenous ILK–p38β complexes is sensitive to QLT-0267, a small molecule ILK kinase inhibitor. Finally, inhibition of ILK reduces the amplitude and period of serum-induced activation of heat shock protein 27 (Hsp27), a target of p38β implicated in actin cytoskeletal reorganization. Our work identifies Hsp27 as a novel target of ILK–p38β signaling complexes, playing a key role in bladder cancer cell migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously showed that integrin alphavbeta3 overexpression and engagement by its ligand vitronectin increased adhesion, motility, and proliferation of human ovarian cancer cells. In search of differentially regulated genes involved in these tumor biological events, we previously identified the integrin-linked kinase (ILK) to be under control of alphavbeta3. In the present investigation we demonstrated significantly upregulated ILK protein as a function of alphavbeta3 in two ovarian cancer cell lines, OV-MZ-6 and OVCAR-3, and proved co-localization at the surface of alphavbeta3-overexpressing cells adherent to vitronectin. Increase of ILK protein was reflected by enhanced ILK promoter activity, an effect, which we further characterized with regard to transcriptional response elements involved. Abrogation of NF-kappaB/c-rel or p53 binding augmented ILK promoter activity and preserved induction by alphavbeta3. The AP1-mutant exhibited decreased promoter activity but was also still inducible by alphavbeta3. Disruption of the two DNA consensus motifs for Ets proteins led to divergent observations: mutation of the Ets motif at promoter position -462 bp did not significantly alter promoter activity but still allowed response to alphavbeta3. In contrast, disruption of the second Ets motif at position -85 bp did not only lead to slightly diminished promoter activity but also, in that case, abrogated ILK promoter induction by alphavbeta3. Subsequent co-transfection studies with ets-1 in the presence of the second Ets motif led to additional induction of ILK promoter activity. Taken together, these data suggest that ets-1 binding to the second Ets DNA motif strongly contributes to alphavbeta3-mediated ILK upregulation. By increasing ILK as an important integrin-proximal kinase, alphavbeta3 may promote its intracellular signaling and tumor biological processes arising thereof in favor of ovarian cancer metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately half of prostate cancers (PCa) carry TMPRSS2-ERG translocations; however, the clinical impact of this genomic alteration remains enigmatic. Expression of v-ets erythroblastosis virus E26 oncogene like (avian) gene (ERG) promotes prostatic epithelial dysplasia in transgenic mice and acquisition of epithelial-to-mesenchymal transition (EMT) characteristics in human prostatic epithelial cells (PrECs). To explore whether ERG-induced EMT in PrECs was associated with therapeutically targetable transformation characteristics, we established stable populations of BPH-1, PNT1B and RWPE-1 immortalized human PrEC lines that constitutively express flag-tagged ERG3 (fERG). All fERG-expressing populations exhibited characteristics of in vitro and in vivo transformation. Microarray analysis revealed >2000 commonly dysregulated genes in the fERG-PrEC lines. Functional analysis revealed evidence that fERG cells underwent EMT and acquired invasive characteristics. The fERG-induced EMT transcript signature was exemplified by suppressed expression of E-cadherin and keratins 5, 8, 14 and 18; elevated expression of N-cadherin, N-cadherin 2 and vimentin, and of the EMT transcriptional regulators Snail, Zeb1 and Zeb2, and lymphoid enhancer-binding factor-1 (LEF-1). In BPH-1 and RWPE-1-fERG cells, fERG expression is correlated with increased expression of integrin-linked kinase (ILK) and its downstream effectors Snail and LEF-1. Interfering RNA suppression of ERG decreased expression of ILK, Snail and LEF-1, whereas small interfering RNA suppression of ILK did not alter fERG expression. Interfering RNA suppression of ERG or ILK impaired fERG-PrEC Matrigel invasion. Treating fERG-BPH-1 cells with the small molecule ILK inhibitor, QLT-0267, resulted in dose-dependent suppression of Snail and LEF-1 expression, Matrigel invasion and reversion of anchorage-independent growth. These results suggest that ILK is a therapeutically targetable mediator of ERG-induced EMT and transformation in PCa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with beta 1- and beta 3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLC gamma 2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in alpha-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for alpha-granule secretion and therefore may play a central role in the regulation of platelet function. (Blood. 2008; 112: 4523-4531)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Activation of the platelet integrin alpha(2)beta(1) is closely regulated due to the high thrombogenicity of its ligand. As a beta(1) interacting kinase, ILK represents a candidate intracellular regulator of alpha(2)beta(1) in human platelets. Objectives We investigated the regulation of ILK in human platelets and the role of ILK in regulating alpha(2)beta(1) activation in HEL cells, a megakaryocytic cell line. Methods: An in-vitro kinase assay was used to determine the effect of platelet agonists on ILK kinase activity together with the contribution of PI3K and PKC on ILK activation. Interaction of ILK with beta(1)-integrin subunits was investigated by coimmunoprecipitation and the role of ILK in regulating alpha(2)beta(1) function assessed by overexpression studies in HEL cells. Results: We report that collagen and thrombin modulate ILK kinase activity in human platelets in an aggregation-independent manner. Furthermore, ILK activity is dually regulated by PI3K and PKC in thrombin-stimulated platelets and regulated by PI3K in collagen-stimulated cells. ILK associates with the beta(1)-integrin subunits immunoprecipitated from platelet cell lysates, an association which increased upon collagen stimulation. Overexpression of ILK in HEL cells enhanced alpha(2)beta(1)-mediated adhesion whereas overexpression of kinase-dead ILK reduced adhesion, indicating a role for this kinase in the positive regulation of alpha(2)beta(1). Conclusions: Our findings that ILK regulates alpha(2)beta(1) in HEL cells, is activated in platelets and associates with beta(1)-integrins, raise the possibility that it may play a key role in adhesion events upon agonist stimulation of platelets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Integrin-linked kinase (ILK) and its associated complex of proteins are involved in many cellular activation processes, including cell adhesion and integrin signaling. We have previously demonstrated that mice with induced platelet ILK deficiency show reduced platelet activation and aggregation, but only a minor bleeding defect. Here, we explore this apparent disparity between the cellular and hemostatic phenotypes. METHODS: The impact of ILK inhibition on integrin αII b β3 activation and degranulation was assessed with the ILK-specific inhibitor QLT0267, and a conditional ILK-deficient mouse model was used to assess the impact of ILK deficiency on in vivo platelet aggregation and thrombus formation. RESULTS: Inhibition of ILK reduced the rate of both fibrinogen binding and α-granule secretion, but was accompanied by only a moderate reduction in the maximum extent of platelet activation or aggregation in vitro. The reduction in the rate of fibrinogen binding occurred prior to degranulation or translocation of αII b β3 to the platelet surface. The change in the rate of platelet activation in the absence of functional ILK led to a reduction in platelet aggregation in vivo, but did not change the size of thrombi formed following laser injury of the cremaster arteriole wall in ILK-deficient mice. It did, however, result in a marked decrease in the stability of thrombi formed in ILK-deficient mice. CONCLUSION: Taken together, the findings of this study indicate that, although ILK is not essential for platelet activation, it plays a critical role in facilitating rapid platelet activation, which is essential for stable thrombus formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrin-linked kinase (ILK) is an ankyrin repeat containing serine-threonine protein kinase that can interact directly with the cytoplasmic domains of the β1 and β3 integrin subunits and whose kinase activity is modulated by cell–extracellular matrix interactions. Overexpression of constitutively active ILK results in loss of cell–cell adhesion, anchorage-independent growth, and tumorigenicity in nude mice. We now show that modest overexpression of ILK in intestinal epithelial cells as well as in mammary epithelial cells results in an invasive phenotype concomitant with a down-regulation of E-cadherin expression, translocation of β-catenin to the nucleus, formation of a complex between β-catenin and the high mobility group transcription factor, LEF-1, and transcriptional activation by this LEF-1/β-catenin complex. We also find that LEF-1 protein expression is rapidly modulated by cell detachment from the extracellular matrix, and that LEF-1 protein levels are constitutively up-regulated at ILK overexpression. These effects are specific for ILK, because transformation by activated H-ras or v-src oncogenes do not result in the activation of LEF-1/β-catenin. The results demonstrate that the oncogenic properties of ILK involve activation of the LEF-1/β-catenin signaling pathway, and also suggest ILK-mediated cross-talk between cell–matrix interactions and cell–cell adhesion as well as components of the Wnt signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single nucleotide-polymorphisms (SNPs) are a source of diversity among human population, which may be responsible for the different individual susceptibility to diseases and/or response to drugs, among other phenotypic traits. Several low penetrance susceptibility genes associated with malignant melanoma (MM) have been described, including genes related to pigmentation, DNA damage repair and oxidative stress pathways. In the present work, we conducted a candidate gene association study based on proteins and genes whose expression we had detected altered in melanoma cell lines as compared to normal melanocytes. The result was the selection of 88 loci and 384 SNPs, of which 314 fulfilled our quality criteria for a case-control association study. The SNP rs6854854 in ANXA5 was statistically significant after conservative Bonferroni correction when 464 melanoma patients and 400 controls were analyzed in a discovery Phase I. However, this finding could not be replicated in the validation phase, perhaps because the minor allele frequency of SNP rs6854854 varies depending on the geographical region considered. Additionally, a second SNP (rs6431588) located on ILKAP was found to be associated with melanoma after considering a combined set of 1,883 MM cases and 1,358 disease-free controls. The OR was 1.29 (95% CI 1.12-1.48; p-value= 4x10(-4)). Both SNPs, rs6854854 in ANXA5 and rs6431588 in ILKAP, show population structure, which, assuming that the Spanish population is not significantly structured, suggests a role of these loci on a specific genetic adaptation to different environmental conditions. Furthermore, the biological relevance of these genes in MM is supported by in vitro experiments, which show a decrease in the transcription levels of ANXA5 and ILKAP in melanoma cells compared to normal melanocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phosphoinositide 3-kinase (PI3K) is a critical component of the signaling pathways that control the activation of platelets. Here we have examined the regulation of protein kinase B (PKB), a downstream effector of PI3K, by the platelet collagen receptor glycoprotein (GP) VI and thrombin receptors. Stimulation of platelets with collagen or convulxin (a selective GPVI agonist) resulted in PI3K-dependent, and aggregation independent, Ser(473) and Thr(308) phosphorylation of PKBalpha, which results in PKB activation. This was accompanied by translocation of PKB to cell membranes. The phosphoinositide-dependent kinase PDK1 is known to phosphorylate PKBalpha on Thr(308), although the identity of the kinase responsible for Ser(473) phosphorylation is less clear. One candidate that has been implicated as being responsible for Ser(473) phosphorylation, either directly or indirectly, is the integrin-linked kinase (ILK). In this study we have examined the interactions of PKB, PDK1, and ILK in resting and stimulated platelets. We demonstrate that in platelets PKB is physically associated with PDK1 and ILK. Furthermore, the association of PDK1 and ILK increases upon platelet stimulation. It would therefore appear that formation of a tertiary complex between PDK1, ILK, and PKB may be necessary for phosphorylation of PKB. These observations indicate that PKB participates in cell signaling downstream of the platelet collagen receptor GPVI. The role of PKB in collagen- and thrombin-stimulated platelets remains to be determined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exposure of cells to protein tyrosine phosphatase (PTP) inhibitors causes an increase in the phosphotyrosine content of many cellular proteins. However, the level at which the primary signaling event is affected is still unclear. We show that Jaks are activated by tyrosine phosphorylation in cells that are briefly exposed to the PTP inhibitor pervanadate (PV), resulting in tyrosine phosphorylation and functional activation of Stat6 (in addition to other Stats). Mutant cell lines that lack Jak1 activity fail to support PV-mediated [or interleukin 4 (IL-4)-dependent] activation of Stat6 but can be rescued by complementation with functional Jak1. The docking sites for both Jak1 and Stat6 reside in the cytoplasmic domain of the IL-4 receptor α-chain (IL-4Rα). The glioblastoma-derived cell lines T98G, GRE, and M007, which do not express the IL-4Rα chain, fail to support Stat6 activation in response to either IL-4 or PV. Complementation of T98G cells with the IL-4Rα restores both PV-mediated and IL-4-dependent Stat6 activation. Murine L929 cells, which do not express the γ common chain of the IL-4 receptor, support PV-mediated but not IL-4-dependent Stat6 activation. Thus, Stat6 activation by PV is an IL-4Rα-mediated, Jak1-dependent event that is independent of receptor dimerization. We propose that receptor-associated constitutive PTP activity functions to down-regulate persistent, receptor-linked kinase activity. Inhibition or deletion of PTP activity results in constitutive activation of cytokine signaling pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. AcetylL-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underling its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METHtriggered MMPs’ activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have used a recombinant mouse pre-B cell line (TonB210.1, expressing Bcr/Abl under the control of an inducible promoter) and several human leukemia cell lines to study the effect of high tyrosine kinase activity on G protein-coupled receptor (GPCR) agonist-stimulated cellular Ca(2+) release and store-operated Ca(2+) entry (SOCE). After induction of Bcr/Abl expression, GPCR-linked SOCE increased. The effect was reverted in the presence of the specific Abl inhibitor imatinib (1microM) and the Src inhibitor PP2 (10microM). In leukemic cell lines constitutively expressing high tyrosine kinase activity, Ca(2+) transients were reduced by imatinib and/or PP2. Ca(2+) transients were enhanced by specific inhibitors of PKC subtypes and this effect was amplified by tyrosine kinase inhibition in Bcr/Abl expressing TonB210.1 and K562 cells. Under all conditions Ca(2+) transients were essentially blocked by the PKC activator PMA. In Bcr/Abl expressing (but not in native) TonB210.1 cells, tyrosine kinase inhibitors enhanced PKCalpha catalytic activity and PKCalpha co-immunoprecipitated with Bcr/Abl. Unlike native TonB210.1 cells, Bcr/Abl expressing cells showed a high rate of cell death if Ca(2+) influx was reduced by complexing extracellular Ca(2+) with BAPTA. Our data suggest that tonic inhibition of PKC represents a mechanism by which high tyrosine kinase activity can enhance cellular Ca(2+) transients and thus exert profound effects on the proliferation, apoptosis and chemotaxis of leukemic cells.