76 resultados para hypoxanthine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenine nucleotides and their related compounds were determined in muscle extracts from two species of fish that were stored in ice after thawing. The fish were the closely related species, Australian barramundi (Lates calcarifer ) and Kenyan Nile perch (Lates niloticus ) which had different process histories. For all samples, adenine nucleotides did not exceed 6% of the total nucleotide pool. Inosine monophosphate (IMP) decreased steadily with storage. Hypoxanthine (Hx) was the major product of adenosine triphosphate (ATP) degradation in both barramundi and Nile perch, showing a steady increase with days of iced storage. The Hx level did not reach a maximum during the 9d storage period. The K-value also increased regularly with time of storage and for the later stages (i.e., 7 and 9d) and was significantly different (P < 0.01) for the two species. The iced storage life of these typical samples of barramundi and Nile perch was estimated to be 3d after thawing using a K-value of < 30% to indicate excellent quality. Despite the differences in process history the nucleotide profiles were remarkably similar during storage. This precludes the use of nucleotide levels as a means of differentiating between these species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension, obesity, dyslipidemia and dysglycemia constitute metabolic syndrome, a major public health concern, which is associated with cardiovascular mortality. High dietary salt (NaCl) is the most important dietary risk factor for elevated blood pressure. The kidney has a major role in salt-sensitive hypertension and is vulnerable to harmful effects of increased blood pressure. Elevated serum urate is a common finding in these disorders. While dysregulation of urate excretion is associated with cardiovascular diseases, present studies aimed to clarify the role of xanthine oxidoreductase (XOR), i.e. xanthine dehydrogenase (XDH) and its post-translational isoform xanthine oxidase (XO), in cardiovascular diseases. XOR yields urate from hypoxanthine and xanthine. Low oxygen levels upregulate XOR in addition to other factors. In present studies higher renal XOR activity was found in hypertension-prone rats than in the controls. Furthermore, NaCl intake increased renal XOR dose-dependently. To clarify whether XOR has any causal role in hypertension, rats were kept on NaCl diets for different periods of time, with or without a XOR inhibitor, allopurinol. While allopurinol did not alleviate hypertension, it prevented left ventricular and renal hypertrophy. Nitric oxide synthases (NOS) produce nitric oxide (NO), which mediates vasodilatation. A paucity of NO, produced by NOS inhibition, aggravated hypertension and induced renal XOR, whereas NO generating drug, alleviated salt-induced hypertension without changes in renal XOR. Zucker fa/fa rat is an animal model of metabolic syndrome. These rats developed substantial obesity and modest hypertension and showed increased hepatic and renal XOR activities. XOR was modified by diet and antihypertensive treatment. Cyclosporine (CsA) is a fungal peptide and one of the first-line immunosuppressive drugs used in the management of organ transplantation. Nephrotoxicity ensue high doses resulting in hypertension and limit CsA use. CsA increased renal XO substantially in salt-sensitive rats on a high NaCl diet, indicating a possible role for this reactive oxygen species generating isoform in CsA nephrotoxicity. Renal hypoxia, common to these rodent models of hypertension and obesity, is one of the plausible XOR inducing factors. Although XOR inhibition did not prevent hypertension, present experimental data indicate that XOR plays a role in the pathology of salt-induced cardiac and renal hypertrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria causes a worldwide annual mortality of about a million people.Rapidly evolving drug-resistant species of the parasite have created a pressing need for the identification of new drug targets and vaccine candidates. By developing fractionation protocols to enrich parasites from low-parasitemia patient samples, we have carried out the first ever proteomics analysis of clinical isolates of early stages of Plasmodium falciparum (Pf) and P. vivax. Patient-derived malarial parasites were directly processed and analyzed using shotgun proteomics approach using high-sensitivity MS for protein identification. Our study revealed about 100 parasite-coded gene products that included many known drug targets such as Pf hypoxanthine guanine phosphoribosyl transferase, Pf L-lactate dehydrogenase, and Plasmepsins. In addition,our study reports the expression of several parasite proteins in clinical ring stages that have never been reported in the ring stages of the laboratory-cultivated parasite strain. This proof-of-principle study represents a noteworthy step forward in our understanding of pathways elaborated by the parasite within the malaria patient and will pave the way towards identification of new drug and vaccine targets that can aid malaria therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmodium falciparum causes the most severe form of malaria that is fatal in many cases. Emergence of drug resistant strains of P. falciparum requires that new drug targets be-identified. This review considers in detail enzymes of the glycolytic pathway, purine salvage pathway, pyrimidine biosynthesis and proteases involved in catabolism of haemoglobin. Structural features of P. falciparum triosephosphate isomerase which could be exploited for parasite specific drug development have been highlighted. Utility of P. falciparum hypoxanthine-guanine-phosphoribosyltransferase, adenylosuccinate synthase, dihydroorotate dehydrogenase, thymidylate synthase-dihydrofolate reductase, cysteine and aspartic proteases have been elaborated in detail. The review also briefly touches upon other potential targets in P. falciparum

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addition of dibutyryl 3′,5′-cyclic AMP to slices of bovine pituitary stimulated incorporation of [3H]leucine into protein, whether or not actinomycin D was present; therefore the influence of 3′,5′-cyclic AMP on protein synthesis by bovine pituitary polysomes was studied. If the cyclic nucleotide was added to the complete protein-synthesizing system (including pH 5.0 enzyme), stimulation of [3H]leucine incorporation occurred only with pH 5.0 enzyme from rat liver; there was no stimulation when homologous enzyme, i.e., from bovine pituitary, was used. Addition of 3′,5′-cyclic AMP to the polysomes, before addition of pH 5.0 enzyme, resulted in stimulation of protein synthesis with either source of enzyme, but stimulation was facilitated to a greater degree, over the range 0.5-2 mM 3′,5′-cyclic AMP, when rat liver was the source. The stimulation of protein synthesis was prevented by the addition of cycloheximide. With rat liver pH 5.0 enzyme the product of hydrolysis of 3′,5′-cyclic AMP was mainly 5′-AMP whereas with pituitary pH 5.0 enzyme there was also dephosphorylation and deamination resulting in production of hypoxanthine and other bases. However, using either source of pH 5.0 enzyme and the complete protein-synthesizing system (i.e., including an ATP-regenerating mechanism) most of the 3H from hydrolysis of [3H]3′,5′-cyclic AMP was incorporated into ATP. The data are seen as compatible with a stimulation by 3′,5′-cyclic AMP of translation by pituitary polysomes; the significance of the importance of the source of pH 5.0 enzyme used in the system is obscure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of 2',3'-O-isopropylidene inosine shows a number of interesting features. The four independent molecules in the asymmetric unit exhibit significant conformational variations. Ribose puckers fall in the O(4')-exo region, unfavourable in unsubstituted nucleosides. Hypoxanthine bases show base-pairing (I.I) in a manner analogous to the guanine self pairs (G.G) in 2',3'-O-isopropylidene guanosine but with a C(2)-H…O(6) hydrogen bond instead of N(2)-H…O(6).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purine nucleotide synthesis in Plasmodium falciparum takes place solely by the purine salvage pathway in which preformed purine base(s) are salvaged from the host and acted upon by a battery of enzymes to generate AMP and GMP. Inhibitors of this pathway have a potent effect on the in vitro growth of P. falciparum and are hence, implicated as promising leads for the development of new generation anti-malarials. Here, we describe the mechanism of inhibition of the intraerythrocytic growth of P. falciparum by the purine nucleoside precursor, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Our results show that AICAR toxicity is mediated through the erythrocyte in which AICAR is phosphorylated to its nucleotide, ZMP. Further, purine metabolite labeling of the parasitized erythrocytes by H-3]-hypoxanthine, in the presence of AICAR, showed a significant decrease in radioactive counts in adenylate fractions but not in guanylate fractions. The most dramatic effect on parasite growth was observed when erythrocytes pretreated with AICAR were used in culture. Pretreatment of erythrocytes with AICAR led to significant intracellular accumulation of ZMP and these erythrocytes were incapable of supporting parasite growth. These results implicate that in addition to the purine salvage pathway in P. falciparum, AICAR alters the metabolic status of the erythrocytes, which inhibits parasite growth. As AICAR and ZMP are metabolites in the human serum and erythrocytes, our studies reported here throw light on their possible role in disease susceptibility, and also suggests the possibility of AICAR being a potential prophylactic or chemotherapeutic anti-malarial compound. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The studies provided data on the spoilage pattern of Otolithus argenteus during low temperature preservation. Changes in the total volatile bases, hypoxanthine, tyrosine, salt soluble nitrogen, non-protein nitrogen, pH, peroxide value, free fatty acids and thiobarbituric acid number along with organoleptic score have been reported. Organoleptically, fish stored at +20 degree C remained in acceptable condition upto 12 days while for those stored at 0 degree C in ice upto 19 days. Of the various indices tested Hypoxanthine, salt soluble nitrogen and total volatile bases nitrogen, in the order of merit can be used as freshness tests for refrigerated fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of raw and processed fishery products depend on several factors like physiological conditions at the time of capture, morphological differences, rigor mortis, species, rate of icing and subsequent storage conditions. Sensory evaluation is still the most reliable method for evaluation of the freshness of raw processed fishery products. Sophisticated methods like Intelectron fish tester, cell fragility technique and chemical and bacteriological methods like estimation of trimethylamine, hypoxanthine, carbonyl compounds, volatile acid and total bacterial count have no doubt been developed for accessing the spoilage in fish products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality changes during storage were investigated for several commercially important East African freshwater fish. Lates, Bagrus, Protopterus, Tilapia esculenta and T. nilotica were examined during storage in ice and at ambient temperature (250•C). After 24 hours at ambient temperature Lates and Bagrus were completely spoilt but Protopterus was still edible. In iced storage most fish were acceptable for at least 20 days. Organoleptic examination showed that T. nilotica was acceptable after 22 days storage in ice and that gutting was only marginally beneficial. Changes in physical appearance, which could form the basis of a fish inspection system, were recorded during storage. Possible chemical quality control indices were also investigated. It was found that total volatile bases and hypoxanthine are unlikely to be useful quality indices for the species studied with the possible exception of Lates. The bacterial counts of the flesh and skin of T. esculenta and T. niloticus were found to be low (a maximum of 10 organisms per sq cm of skin or per g of flesh) after 22 days storage in ice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anodic voltammetric behavior of inosine (I) was investigated by linar-sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.1 mol/L N2HPO4, inosine showed a well defined anodic peak. The peak potential was about 1.42 V (vs. Ag/AgCl). A linear relationship held between the peak current and the concentration of inosine in the rang of 5 x 10(-4) similar to 8 x 10(-2) g/L. The peak potential decreased with the decrease of the acidity of the solution. The four anodic peaks of inosine with hypoxanthine, xanthine and uric acid were obtained. Their peak potentials were about at 1.42, 1.07, 0.72 and 0.26 Vt vs. Ag/AgCl). The method has been used for the direct determination of inosine in injections. Recoveries of inosine in urine samples were about 85%. Experimental result proved that the electrode reaction was diffusion-controlled and irreversible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (k(cat)/K-m/k(uncat)) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (k(cat)) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Purine catabolism may be an unappreciated, but important component of the homeostatic response of mitochondria to oxidant stress. Accumulating evidence suggests a pivotal role of oxidative stress in schizophrenia pathology. METHODOLOGY/PRINCIPAL FINDINGS: Using high-pressure liquid chromatography coupled with a coulometric multi-electrode array system, we compared 6 purine metabolites simultaneously in plasma between first-episode neuroleptic-naïve patients with schizophrenia (FENNS, n = 25) and healthy controls (HC, n = 30), as well as between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. Significantly higher levels of xanthosine (Xant) and lower levels of guanine (G) were seen in both patient groups compared to HC subjects. Moreover, the ratios of G/guanosine (Gr), uric acid (UA)/Gr, and UA/Xant were significantly lower, whereas the ratio of Xant/G was significantly higher in FENNS-BL than in HC. Such changes remained in FENNS-4w with exception that the ratio of UA/Gr was normalized. All 3 groups had significant correlations between G and UA, and Xan and hypoxanthine (Hx). By contrast, correlations of UA with each of Xan and Hx, and the correlation of Xan with Gr were all quite significant for the HC but not for the FENNS. Finally, correlations of Gr with each of UA and G were significant for both HC and FENNS-BL but not for the FENNS-4w. CONCLUSIONS/SIGNIFICANCE: During purine catabolism, both conversions of Gr to G and of Xant to Xan are reversible. Decreased ratios of product to precursor suggested a shift favorable to Xant production from Xan, resulting in decreased UA levels in the FENNS. Specifically, the reduced UA/Gr ratio was nearly normalized after 4 weeks of antipsychotic treatment. In addition, there are tightly correlated precursor and product relationships within purine pathways; although some of these correlations persist across disease or medication status, others appear to be lost among FENNS. Taken together, these results suggest that the potential for steady formation of antioxidant UA from purine catabolism is altered early in the course of illness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of ATP breakdown products in chicken M. pectoralis major post-slaughter is reported. The concentrations of metabolites were followed in chicken breast throughout the carcass processing post-slaughter and during chilled storage. The concentration of glucose remains similar throughout the period whilst that of glucose-6-phosphate decreases linearly. Glucose and glucose-6-phosphate concentrations were inversely related to the pHu of the breast meat throughout chilled storage. Rapid post-mortem glycolysis and high pHu values suggest the occurrence of stress at and pre-slaughter. Whilst ATP, ADP and AMP were rapidly broken down, the concentration of IMP rose rapidly and remained high. Concentrations of inosine, ribose and hypoxanthine increased gradually post-slaughter but an initial increase in ribose phosphate was not sustained. Most of the potential ribose present in chicken meat, believed to be important for flavor formation, remains bound in the form of inosine and IMP. There is evidence that additional breakdown pathways for ribose and ribose-5-phosphate may deplete the concentrations of these precursors.