921 resultados para human cell


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We evaluated the development of the exocrine pancreas in 16 healthy preterm infants (29.3 ± 1.6 weeks). The infants were fed breast milk with formula supplements (n=8) or formula alone (n=8). Growth was monitored weekly for 12 weeks then at 3, 6, 9, 12 months. At the same intervals sera were determined for pancreatic lipase and cationic trypsinogen. In addition, cord blood samples were analysed from another 33 preterm (27.6 ± 5.2 weeks) and 75 healthy full-term infants. Serum pancreatic lipase in the cord blood of term (3.7 ± 0.4 μg/l) and preterm infants (1.8 ± 0.2 μg/l) was significantly below values reported for older children (10.5 ± 0.9 μg/l; p < 0.001). In the preterm infant, serum lipase was also significantly lower than values obtained at term (p < 0.001). At birth, serum trypsinogen for preterm (16.8 ± 1.3 μg/l) and term infants (23.3 ± 1.9 μg/l) were below those for older children (31.4 ± 3.7 μg/l; p < 0.05). Over the first 3 weeks of life, serum lipase and trypsinogen increased significantly. From 3 weeks to 12 months of age, serum trypsinogen values remained unchanged, but serum lipase increased dramatically after 10 weeks of age. Thus, at 6 and 12 months of age, the preterm infants had significantly higher serum lipase values than infants of the same age born at term. These two pancreatic enzymes appear to show independent age-related maturation in infants born before term. The rate of maturation of lipase appears to be accelerated by exposure to the extrauterine environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The immune system has to recognize and destroy abnormal or infected cells to maintain homeostasis. Natural killer (NK) cells directly recognize and kill transformed or virus-infected cells without prior sensitization. We have studied both virus-infected and tumor cells in order to identify the target structures involved in triggering NK activity. Mouse/human cell hybrids containing various human chromosomes were used as targets. The human chromosome responsible for activating NK cell killing was identified to chromosome number 6. The results suggest that activated NK cells recognize ligands that are encoded on human chromosome 6. We showed that the ligand on the target cell side was intercellular adhesion molecule 2 (ICAM-2). There was no difference in the level of expression of ICAM-2, however, but a drastic difference was seen in the distribution of the molecule: ICAM-2 was evenly distributed on the surface of the NK-resistant cells, but almost totally redistributed to the tip of uropods, bud-like extensions, which were absent from the parental cells. Interestingly, the gene coding for cytoskeletal linker protein ezrin has been localized to human chromosome 6, and there was a colocalization of ezrin and ICAM-2 in the uropods. Furthermore, the transfected human ezrin into NK cell-resistant cells induced uropod formation, ICAM-2 and ezrin redistribution to newly formed uropods, and sensitized target cells to NK cell killing. These data reveal a novel form of NK cell recognition: target structures are already present on normal cells; they become detectable only after abnormal redistribution into hot spots on the target cell membrane. NK cells are central players in the defence against virus infections. They inhibit the spread of infection, allowing time for specific immune responses to develop. The virus-proteins that directly activate human NK cell killing are largely unknown. We studied the sensitivity of virus-specific early proteins of Semliki Forest virus (SFV) to NK killing. The viral non-structural proteins (nsP1-4) translated early in the virus cycle were transfected in NK-resistant cells. Viral early gene nsP1 alone efficiently sensitized target cells to NK activity, and the tight membrane association of nsP1 seems to be critical in the triggering of NK killing. NsP1 protein colocalized with (redistributed) ezrin in filopodia-like structures to which the NK cells were bound. The results suggest that also in viral infections NK cells react to rapid changes in membrane topography. Based on the results of this thesis, a new model of target cell recognition of NK cells can be suggested: reorganization of the cytoskeleton induces alterations in cell surface topography, and this new pattern of surface molecules is recognized as "altered-self".

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis studies human gene expression space using high throughput gene expression data from DNA microarrays. In molecular biology, high throughput techniques allow numerical measurements of expression of tens of thousands of genes simultaneously. In a single study, this data is traditionally obtained from a limited number of sample types with a small number of replicates. For organism-wide analysis, this data has been largely unavailable and the global structure of human transcriptome has remained unknown. This thesis introduces a human transcriptome map of different biological entities and analysis of its general structure. The map is constructed from gene expression data from the two largest public microarray data repositories, GEO and ArrayExpress. The creation of this map contributed to the development of ArrayExpress by identifying and retrofitting the previously unusable and missing data and by improving the access to its data. It also contributed to creation of several new tools for microarray data manipulation and establishment of data exchange between GEO and ArrayExpress. The data integration for the global map required creation of a new large ontology of human cell types, disease states, organism parts and cell lines. The ontology was used in a new text mining and decision tree based method for automatic conversion of human readable free text microarray data annotations into categorised format. The data comparability and minimisation of the systematic measurement errors that are characteristic to each lab- oratory in this large cross-laboratories integrated dataset, was ensured by computation of a range of microarray data quality metrics and exclusion of incomparable data. The structure of a global map of human gene expression was then explored by principal component analysis and hierarchical clustering using heuristics and help from another purpose built sample ontology. A preface and motivation to the construction and analysis of a global map of human gene expression is given by analysis of two microarray datasets of human malignant melanoma. The analysis of these sets incorporate indirect comparison of statistical methods for finding differentially expressed genes and point to the need to study gene expression on a global level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is an increasing awareness of the therapeutic potential for combining immune-based therapies with chemotherapy in the treatment of malignant diseases, but few published studies evaluate possible cytotoxic synergies between chemotherapy and cytotoxic immune cells. Human Vα24 +/Vβ11+ NKT cells are being evaluated for use in cell-based immunotherapy of malignancy because of their immune regulatory functions and potent cytotoxic potential. In this study, we evaluated the cytotoxicity of combinations of chemotherapy and NKT cells to determine whether there is a potential to combine these treatment modalities for human cancer therapy. The cytotoxicity of NKT cells was tested against solid-tumor derived cell lines NCI-H358, DLD-1, HT-29, DU-145, TSU-Pr1 and MDA-MB231, with or without prior treatment of these target cells, with a range of chemotherapy agents. Low concentrations of chemotherapeutic agents led to sensitization of cell lines to NKT-mediated cytotoxicity, with the greatest effect being observed for prostate cancer cells. Synergistic cytotoxicity occurred in an NKT cell in a dose-dependent manner. Chemotherapy agents induced upregulation of cell surface TRAIL-R2 (DR5) and Fas (CD95) expression, increasing the capacity for NKT cells to recognize and kill via TRAIL- and FasL-mediated pathways. We conclude that administration of cytotoxic immune cells after chemotherapy may increase antitumor activities in comparison with the use of either treatment alone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Combinations of cellular immune-based therapies with chemotherapy and other antitumour agents may be of significant clinical benefit in the treatment of many forms of cancer. Gamma delta (γδ) T cells are of particular interest for use in such combined therapies due to their potent antitumour cytotoxicity and relative ease of generation in vitro. Here, we demonstrate high levels of cytotoxicity against solid tumour-derived cell lines with combination treatment utilizing Vγ9Vδ2 T cells, chemotherapeutic agents and the bisphosphonate, zoledronate. Pre-treatment with low concentrations of chemotherapeutic agents or zoledronate sensitized tumour cells to rapid killing by Vγ9Vδ2 T cells with levels of cytotoxicity approaching 90%. In addition, zoledronate enhanced the chemotherapy-induced sensitization of tumour cells to Vγ9Vδ2 T cell cytotoxicity resulting in almost 100% lysis of tumour targets in some cases. Vγ9Vδ2 T cell cytotoxicity was mediated by perforin following TCR-dependent and isoprenoid-mediated recognition of tumour cells. Production of IFN-γ by Vγ9Vδ2 T cells was also induced after exposure to sensitized targets. We conclude that administration of Vγ9Vδ2 T cells at suitable intervals after chemotherapy and zoledronate may substantially increase antitumour activities in a range of malignancies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates beta-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3'-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I-Kr blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by cata lyzi ng ubiquitination of the S phase CDK inhibitor SIC1. SCF is composed of several evolutionarily conserved proteins, including ySKP1, CDC53 (Cullin), and the F-box protein CDC4. We isolated hSKP1 in a two-hybrid screen with hCUL1, the human homologue of CDC53. We showed that hCUL1 associates with hSKP1 in vivo and directly interacts with hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-Iike particle. Moreover, hCUL1 complements the growth defect of yeast CDC53^(ts) mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. These data demonstrated that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. However, purified human SCF complexes consisting of CUL1, SKP1, and SKP2 are inactive in vitro, suggesting that additional factors are required.

Subsequently, mammalian SCF ubiquitin ligases were shown to regulate various physiological processes by targeting important cellular regulators, like lĸBα, β-catenin, and p27, for ubiquitin-dependent proteolysis by the 26S proteasome. Little, however, is known about the regulation of various SCF complexes. By using sequential immunoaffinity purification and mass spectrometry, we identified proteins that interact with human SCF components SKP2 and CUL1 in vivo. Among them we identified two additional SCF subunits: HRT1, present in all SCF complexes, and CKS1, that binds to SKP2 and is likely to be a subunit of SCF5^(SKP2) complexes. Subsequent work by others demonstrated that these proteins are essential for SCF activity. We also discovered that COP9 Signalosome (CSN), previously described in plants as a suppressor of photomorphogenesis, associates with CUL1 and other SCF subunits in vivo. This interaction is evolutionarily conserved and is also observed with other Cullins, suggesting that all Cullin based ubiquitin ligases are regulated by CSN. CSN regulates Cullin Neddylation presumably through CSNS/JAB1, a stochiometric Signalosome subunit and a putative deneddylating enzyme. This work sheds light onto an intricate connection that exists between signal transduction pathways and protein degradation machinery inside the cell and sets stage for gaining further insights into regulation of protein degradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to interface with and program cellular function remains a challenging research frontier in biotechnology. Although the emerging field of synthetic biology has recently generated a variety of gene-regulatory strategies based on synthetic RNA molecules, few strategies exist through which to control such regulatory effects in response to specific exogenous or endogenous molecular signals. Here, we present the development of an engineered RNA-based device platform to detect and act on endogenous protein signals, linking these signals to the regulation of genes and thus cellular function.

We describe efforts to develop an RNA-based device framework for regulating endogenous genes in human cells. Previously developed RNA control devices have demonstrated programmable ligand-responsive genetic regulation in diverse cell types, and we attempted to adapt this class of cis-acting control elements to function in trans. We divided the device into two strands that reconstitute activity upon hybridization. Device function was optimized using an in vivo model system, and we found that device sequence is not as flexible as previously reported. After verifying the in vitro activity of our optimized design, we attempted to establish gene regulation in a human cell line using additional elements to direct device stability, structure, and localization. The significant limitations of our platform prevented endogenous gene regulation.

We next describe the development of a protein-responsive RNA-based regulatory platform. Employing various design strategies, we demonstrated functional devices that both up- and downregulate gene expression in response to a heterologous protein in a human cell line. The activity of our platform exceeded that of a similar, small-molecule-responsive platform. We demonstrated the ability of our devices to respond to both cytoplasmic- and nuclear-localized protein, providing insight into the mechanism of action and distinguishing our platform from previously described devices with more restrictive ligand localization requirements. Finally, we demonstrated the versatility of our device platform by developing a regulatory device that responds to an endogenous signaling protein.

The foundational tool we present here possesses unique advantages over previously described RNA-based gene-regulatory platforms. This genetically encoded technology may find future applications in the development of more effective diagnostic tools and targeted molecular therapy strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxysterols are products of cholesterol oxidation, which may be produced endogenously or may be absorbed from the diet where they are commonly found in foods of animal origin. Oxysterols are known to be cyctotoxic to cells in culture and mode of toxicity has been identified as apoptosis in certain cell lines. The cytotoxicity of the oxysterols 25-hydroxycholesterol (25-OH) and 7β-hydroxycholesterol (7β-OH) was examined in two human cell lines, HepG2, a hepatoma cell line, and U937, a monocytic cell line. Both 25-OH and 7β-OH were cytotoxic to the HepG2 cell line but apoptotic cells were not detected and it was concluded that cells underwent necrosis. 25-OH was not cytotoxic to the U937 cell line but it was found to have a cytostatic effect. 7β-OH was shown to induce apoptosis in the U937 line. The mechanism of oxysterol-induced apoptosis has not yet been fully elucidated, however the generation of an oxidative stress and the depletion of glutathione have been associated with the initial stages of the apoptotic process. The concentration of cellular antioxidant enzyme, superoxide dismutase (SOD) was increased in association with 7β-OH induced apoptosis in the U937 cell line. There was no change in the glutathione concentration or the SOD activity of HepG2 cells, which underwent necrosis in the presence of 7β-OH. Many apoptotic pathways center on the activation of caspase-3, which is the key executioner protease of apoptosis. Caspase-3 activity was also shown to increase in association with 7β-OH-induced apoptosis in U937 cells but there was no significant increase in caspase-3 activity in HepG2 cells. DNA fragmentation is regarded as the biochemical hallmark of apoptosis, therefore the comet assay as a measure of DNA fragmentation was assessed as a measure of apoptosis. The level of DNA fragmentation induced by 7β-OH, as measured using the comet assay, was similar for both cell lines. Therefore, it was concluded that the comet assay could not be used to distinguish between 7β-OH-induced apoptosis in U937 cells and 7β-OH-induced necrosis in HepG2 cells. The cytotoxicity and apoptotic potency of oxysterols 25-OH, 7β-OH, cholesterol- 5a,6a-epoxide (a-epoxide), cholesterol-5β,6β-epoxide (β-epoxide), 19-hydroxy-cholesterol (19-OH), and 7-ketocholesterol (7-keto) was compared in the U937 cell line. 7 β-OH, β-epoxide and 7-keto were found to induce apoptosis in U937 cells. 7β-OH-induced apoptosis was associated with a decrease in the cellular glutathione concentration and an increase in SOD activity, 7-keto and β-epoxide did not affect the glutathione concentration or the SOD activity of the cells.a-Epoxide, 19-OH and 25-OH were not cytotoxic to the U937 cell line.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antimicrobial peptides from amphibian skin secretion display remarkable broad-spectrum antimicrobial activity and are thus promising for the discovery of new antibiotics. In this study, we report a novel peptide belonging to the phylloseptin family of antimicrobial peptides, from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea, which was named Phylloseptin-PBa. Degenerate primers complementary to putative signal peptide sites of frog skin peptide precursor-encoding cDNAs were designed to interrogate a skin secretion-derived cDNA library from this frog. Subsequently, the peptide was isolated and identified using reverse phase HPLC and MS/MS fragmentation. The synthetic replicate was demonstrated to have activity against S. aureus, E. coli and C. albicans at concentrations of 8, 128 and 8 mg/L, respectively. In addition, it exhibited anti-proliferative activity against the human cancer cell lines, H460, PC3 and U251MG, but was less active against a normal human cell line (HMEC). Furthermore, a haemolysis assay was performed to assess mammalian cell cytotoxicity of Phylloseptin-PBa. This peptide contained a large proportion of α-helical domain, which may explain its antimicrobial and anticancer activities.