38 resultados para homography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of the Annotation files: Annotation files are supplied for each video, for benchmarking. Annotations correspond to ground truths of peoples' positions in the image plane, and also for their feet positions, when they were visible. Annotations were performed manually, with the aid of a code developed by (Silva et al., 2014; see the Thesis for details). Targets (people or feet) are marked at variable frame intervals and then linearly interpolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of the Annotation files: Annotation files are supplied for each video, for benchmarking. Annotations correspond to ground truths of peoples' positions in the image plane, and also for their feet positions, when they were visible. Annotations were performed manually, with the aid of a code developed by (Silva et al., 2014; see the Thesis for details). Targets (people or feet) are marked at variable frame intervals and then linearly interpolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of the Annotation files: Annotation files are supplied for each video, for benchmarking. Annotations correspond to ground truths of peoples' positions in the image plane, and also for their feet positions, when they were visible. Annotations were performed manually, with the aid of a code developed by (Silva et al., 2014; see the Thesis for details). Targets (people or feet) are marked at variable frame intervals and then linearly interpolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of the Annotation files: Annotation files are supplied for each video, for benchmarking. Annotations correspond to ground truths of peoples' positions in the image plane, and also for their feet positions, when they were visible. Annotations were performed manually, with the aid of a code developed by (Silva et al., 2014; see the Thesis for details). Targets (people or feet) are marked at variable frame intervals and then linearly interpolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projective homography sits at the heart of many problems in image registration. In addition to many methods for estimating the homography parameters (R.I. Hartley and A. Zisserman, 2000), analytical expressions to assess the accuracy of the transformation parameters have been proposed (A. Criminisi et al., 1999). We show that these expressions provide less accurate bounds than those based on the earlier results of Weng et al. (1989). The discrepancy becomes more critical in applications involving the integration of frame-to-frame homographies and their uncertainties, as in the reconstruction of terrain mosaics and the camera trajectory from flyover imagery. We demonstrate these issues through selected examples

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIRES, Kelson R. T.; ARAÚJO, Hélder J.; MEDEIROS, Adelardo A. D. Plane Detection Using Affine Homography. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG: Anais... do CBA 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a robust method for ground plane detection in vision-based systems with a non-stationary camera. The proposed method is based on the reliable estimation of the homography between ground planes in successive images. This homography is computed using a feature matching approach, which in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework is presented. This framework provides predictions of the ground plane transformation matrix that are dynamically updated with new measurements. The method is specially suited for challenging environments, in particular traffic scenarios, in which the information is scarce and the homography computed from the images is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at each instant. It is based on the evaluation of the difference between the predicted and the observed transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, an example is provided on how to use the information extracted from ground plane estimation to achieve object detection and tracking. The method has been successfully demonstrated for the detection of moving vehicles in traffic environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIRES, Kelson R. T.; ARAÚJO, Hélder J.; MEDEIROS, Adelardo A. D. Plane Detection Using Affine Homography. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG: Anais... do CBA 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIRES, Kelson R. T.; ARAÚJO, Hélder J.; MEDEIROS, Adelardo A. D. Plane Detection Using Affine Homography. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG: Anais... do CBA 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Multi-media Sensor Networks (WMSNs) have become increasingly popular in recent years, driven in part by the increasing commoditization of small, low-cost CMOS sensors. As such, the challenge of automatically calibrating these types of cameras nodes has become an important research problem, especially for the case when a large quantity of these type of devices are deployed. This paper presents a method for automatically calibrating a wireless camera node with the ability to rotate around one axis. The method involves capturing images as the camera is rotated and computing the homographies between the images. The camera parameters, including focal length, principal point and the angle and axis of rotation can then recovered from two or more homographies. The homography computation algorithm is designed to deal with the limited resources of the wireless sensor and to minimize energy con- sumption. In this paper, a modified RANdom SAmple Consensus (RANSAC) algorithm is proposed to effectively increase the efficiency and reliability of the calibration procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an approach for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera’s optical center and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. Previous methods for auto-calibration of cameras based on pure rotations fail to work in these two degenerate cases. In addition, our approach includes a modified RANdom SAmple Consensus (RANSAC) algorithm, as well as improved integration of the radial distortion coefficient in the computation of inter-image homographies. We show that these modifications are able to increase the overall efficiency, reliability and accuracy of the homography computation and calibration procedure using both synthetic and real image sequences

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a new feature-based approach for mosaicing of camera-captured document images. A novel block-based scheme is employed to ensure that corners can be reliably detected over a wide range of images. 2-D discrete cosine transform is computed for image blocks defined around each of the detected corners and a small subset of the coefficients is used as a feature vector A 2-pass feature matching is performed to establish point correspondences from which the homography relating the input images could be computed. The algorithm is tested on a number of complex document images casually taken from a hand-held camera yielding convincing results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive monitoring of large sites typically requires coordination between multiple cameras, which in turn requires methods for automatically relating events between distributed cameras. This paper tackles the problem of self-calibration of multiple cameras which are very far apart, using feature correspondences to determine the camera geometry. The key problem is finding such correspondences. Since the camera geometry and photometric characteristics vary considerably between images, one cannot use brightness and/or proximity constraints. Instead we apply planar geometric constraints to moving objects in the scene in order to align the scene"s ground plane across multiple views. We do not assume synchronized cameras, and we show that enforcing geometric constraints enables us to align the tracking data in time. Once we have recovered the homography which aligns the planar structure in the scene, we can compute from the homography matrix the 3D position of the plane and the relative camera positions. This in turn enables us to recover a homography matrix which maps the images to an overhead view. We demonstrate this technique in two settings: a controlled lab setting where we test the effects of errors in internal camera calibration, and an uncontrolled, outdoor setting in which the full procedure is applied to external camera calibration and ground plane recovery. In spite of noise in the internal camera parameters and image data, the system successfully recovers both planar structure and relative camera positions in both settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ear recognition, as a biometric, has several advantages. In particular, ears can be measured remotely and are also relatively static in size and structure for each individual. Unfortunately, at present, good recognition rates require controlled conditions. For commercial use, these systems need to be much more robust. In particular, ears have to be recognized from different angles ( poses), under different lighting conditions, and with different cameras. It must also be possible to distinguish ears from background clutter and identify them when partly occluded by hair, hats, or other objects. The purpose of this paper is to suggest how progress toward such robustness might be achieved through a technique that improves ear registration. The approach focuses on 2-D images, treating the ear as a planar surface that is registered to a gallery using a homography transform calculated from scale-invariant feature-transform feature matches. The feature matches reduce the gallery size and enable a precise ranking using a simple 2-D distance algorithm. Analysis on a range of data sets demonstrates the technique to be robust to background clutter, viewing angles up to +/- 13 degrees, and up to 18% occlusion. In addition, recognition remains accurate with masked ear images as small as 20 x 35 pixels.