925 resultados para heavy metal poisoning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral elements are essential to animal health, survival and production because they are part of physiological, structural, catalytic and regulatory organism functions. Therefore, they should be present in diet. However, these minerals when ingested in excessive doses due to errors in balancing mineral supplements and/or complete ration, intake of plants with high mineral concentration, resulting from addition of fertilizers, herbicides, insecticides and fungicides in pasture or tillage where plants and/or grains will be used to feed animals, decomposition of urban and industrial wastes, leaks and accidental spills of pollutants may result in accumulation of toxic mineral elements in the environment poisoning the animals and may lead them to death. However, toxic doses, physiological changes during poisoning, symptoms and mineral concentration in tissues of poisoned animals to confirm diagnosis are not completely known. Thus, this study reviews mineral element doses that some authors considered toxic for animals intake, as its concentration in tissues of poisoned animals and its physiological effects, symptoms, diagnostic procedures and treatment for poisoning by cadmium, lead, copper, chromium, iodine, manganese, molybdenum, selenium and zinc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research study discussed in the paper investigated the influence of organic matter on heavy metal adsorption for different particle size ranges of build-up solids. Samples collected from road surfaces were assessed for organic matter content, mineral composition, particle size distribution and effective cation exchange capacity. It was found that the organic matter plays a key role in >75µm particles in the adsorption of Zinc, Lead, Nickel and Copper, which are generated by traffic activities. Clay forming minerals and metal oxides of Iron, Aluminium and Manganese was found to be important for heavy metal adsorption to <75µm particles. It was also found that heavy metals adsorbed to organic matter are strongly bound to particles and these metal ions will not be bio-available if the chemical quality of the media remains stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is rare to find an anthology that realizes the possibilities of the form. We tend to regard our edited collections as lesser siblings, and forget their special value. But at times, a subject seems to require an edited collection much more than it does a classic monograph. So it is with the subject showcased here, which concerns the global circulation, performance and consumption of heavy metal. This is a relatively new and emerging body of work, hitherto scattered disparately in the broader popular music studies, but quickly gaining status as a “studies” with the establishment of a global conference, a journal, and publication of this anthology, all in recent years. Metal Rules the Globe took the editors’ a decade to compile. That they have thought deeply about how they want the collection to speak shows through in the book’s thoughtful arrangement and design, and in the way in which they draw on the contributions herein to develop for the field a research agenda that will take it forward...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores melodic and harmonic features of heavy metal, and while doing so, explores various methods of music analysis; their applicability and limitations regarding the study of heavy metal music. The study is built on three general hypotheses according to which 1) acoustic characteristics play a significant role for chord constructing in heavy metal, 2) heavy metal has strong ties and similarities with other Western musical styles, and 3) theories and analytical methods of Western art music may be applied to heavy metal. It seems evident that in heavy metal some chord structures appear far more frequently than others. It is suggested here that the fundamental reason for this is the use of guitar distortion effect. Subsequently, theories as to how and under what principles heavy metal is constructed need to be put under discussion; analytical models regarding the classification of consonance and dissonance and chord categorization are here revised to meet the common practices of this music. It is evident that heavy metal is not an isolated style of music; it is seen here as a cultural fusion of various musical styles. Moreover, it is suggested that the theoretical background to the construction of Western music and its analysis can offer invaluable insights to heavy metal. However, the analytical methods need to be reformed to some extent to meet the characteristics of the music. This reformation includes an accommodation of linear and functional theories that has been found rather rarely in music theory and musicology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals build-up on urban road surfaces is a complex process and influenced by a diverse range of factors. Although numerous research studies have been conducted in the area of heavy metals build-up, limited research has been undertaken to rank these factors in terms of their influence on the build-up process. This results in limitations in the identification of the most critical factor/s for accurately estimating heavy metal loads and for designing effective stormwater treatment measures. The research study undertook an in-depth analysis of the factors which influence heavy metals build-up based on data generated from a number of different geographical locations around the world. Traffic volume was found to be the highest ranked factor in terms of influencing heavy metals build-up while land use was ranked the second. Proximity to arterial roads, antecedent dry days and road surface roughness has a relatively lower ranking. Furthermore, the study outcomes advances the conceptual understanding of heavy metals build-up based on the finding that with increasing traffic volume, total heavy metal build-up load increases while the variability decreases. The outcomes from this research study are expected to contribute to more accurate estimation of heavy metals build-up loads leading to more effective stormwater treatment design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty inherent to heavy metal build-up and wash-off stems from process variability. This results in inaccurate interpretation of stormwater quality model predictions. The research study has characterised the variability in heavy metal build-up and wash-off processes based on the temporal variations in particle-bound heavy metals commonly found on urban roads. The study outcomes found that the distribution of Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were consistent over particle size fractions <150µm and >150µm, with most metals concentrated in the particle size fraction <150µm. When build-up and wash-off are considered as independent processes, the temporal variations in these processes in relation to the heavy metals load are consistent with variations in the particulate load. However, the temporal variations in the load in build-up and wash-off of heavy metals and particulates are not consistent for consecutive build-up and wash-off events that occur on a continuous timeline. These inconsistencies are attributed to interactions between heavy metals and particulates <150µm and >150µm, which are influenced by particle characteristics such as organic matter content. The behavioural variability of particles determines the variations in the heavy metals load entrained in stormwater runoff. Accordingly, the variability in build-up and wash-off of particle-bound pollutants needs to be characterised in the description of pollutant attachment to particulates in stormwater quality modelling. This will ensure the accounting of process uncertainty, and thereby enhancing the interpretation of the outcomes derived from modelling studies.