965 resultados para granulocyte-macrophage colony-stimulating factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of human immunodeficiency virus type 1 (HIV-1) infection on the ability of human monocytes/macrophages to phagocytose Mycobacterium avium complex (MAC) in vivo and in vitro and the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on this function were investigated. By use of a flow cytometric assay to quantify phagocytosis, HIV-1 infection was found to impair the ability of monocyte-derived macrophages to phagocytose MAC in vitro, whereas GM-CSF significantly improved this defect. Phagocytosis was not altered by exposure to a mutant form of GM-CSF (E21R) binding only to the α chain of the GM-CSF receptor, suggesting that signaling by GM-CSF that leads to augmentation of phagocytosis is via the β chain of the receptor. In a patient with AIDS and disseminated multidrug-resistant MAC infection, GM-CSF treatment improved phagocytosis of MAC by peripheral blood monocytes and reduced bacteremia. These results imply that GM-CSF therapy may be useful in restoring antimycobacterial function by human monocytes/macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UV-B-Strahlung, die durch die fortschreitende Zerstörung der Ozonschicht zunimmt, ist hauptsächlich für das Entstehen von Basaliomen und Plattenepithelkarzinomen verantwort-lich, an denen jedes Jahr etwa 2-3 Millionen Menschen weltweit erkranken. UV-B indu-zierte Hautkarzinogenese ist ein komplexer Prozess, bei dem vor allem die mutagenen und immunsuppressiven Wirkungen der UV-B-Strahlung von Bedeutung sind. Die Rolle von GM-CSF in der Hautkarzinogenese ist dabei widersprüchlich. Aus diesem Grund wurde die Funktion von GM-CSF in vivo in der UV-B induzierten Hautkarzinogenese mittels zwei bereits etablierter Mauslinien untersucht: Erstens transgene Mäuse, die einen GM-CSF Antagonisten unter der Kontrolle des Keratin-10-Promotors in den suprabasalen Schichten der Epidermis exprimieren und zweitens solche, die unter dem Keratin-5-Promotor murines GM-CSF in der Basalschicht der Epidermis überexprimieren. Eine Gruppe von Tieren wurde chronisch, die andere akut bestrahlt. Die konstitutionelle Verfassung der Tiere mit erhöhter GM-CSF-Aktivität in der Haut war nach chronischer UV-B-Bestrahlung insgesamt sehr schlecht. Sie wiesen deshalb eine stark erhöhte Mortali-tät auf. Dies ist sowohl auf die hohe Inzidenz als auch dem frühen Auftreten der benignen und malignen Läsionen zurückzuführen. Eine verminderte GM-CSF Aktivität verzögerte dagegen die Karzinomentwicklung und erhöhte die Überlebensrate leicht. GM-CSF wirkt auf verschiedenen Ebenen tumorpromovierend: Erstens erhöht eine gesteigerte Mastzell-anzahl in der Haut der GM-CSF überexprimierenden Tiere per se die Suszeptibilität für Hautkarzinogenese. Zweitens stimuliert GM-CSF die Keratinozytenproliferation. Dadurch kommt es nach UV-B-Bestrahlung zu einer prolongierten epidermalen Hyperproliferation, die zur endogenen Tumorpromotion beiträgt, indem sie die Bildung von Neoplasien unter-stützt. Der Antagonist verzögert dagegen den Proliferationsbeginn, die Keratinozyten blei-ben demzufolge länger in der G1-Phase und der durch UV-B verursachte DNA-Schaden kann effizienter repariert werden. Drittens kann GM-CSF die LCs nicht als APCs aktivie-ren und eine Antitumorimmunität induzieren, da UV-B-Strahlung zur Apoptose von LCs bzw. zu deren Migration in Richtung Lymphknoten führt. Zusätzlich entwickeln GM-CSF überexprimierende Tiere in ihrer Haut nach UV-B-Bestrahlung ein Millieu von antago-nistisch wirkenden Zytokinen, wie TNF-a, TGF-b1 und IL-12p40 und GM-CSF, die proinflammatorische Prozesse und somit die Karzinomentwicklung begünstigen. Der Anta-gonist hemmt nach UV-B-Bestrahlung die Ausschüttung sowohl von immunsuppressiven Zytokinen, wie etwa TNF-a, als auch solchen, die die Th2-Entwicklung unterstützen, wie etwa IL-10 und IL-4. Dies wirkt sich negativ auf die Karzinomentwicklung aus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is part of a cytokine gene cluster and is directly linked to a conserved upstream inducible enhancer. Here we examined the in vitro and in vivo functions of the human GM-CSF enhancer and found that it was required for the correctly regulated expression of the GM-CSF gene. An inducible DNase I-hypersensitive site appeared within the enhancer in cell types such as T cells, myeloid cells, and endothelial cells that express GM-CSF, but not in nonexpressing cells. In a panel of transfected cells the human GM-CSF enhancer was activated in a tissue-specific manner in parallel with the endogenous gene. The in vivo function of the enhancer was examined in a transgenic mouse model that also addressed the issue of whether the GM-CSF locus was correctly regulated in isolation from other segments of the cytokine gene cluster. After correction for copy number the mean level of human GM-CSF expression in splenocytes from 11 lines of transgenic mice containing a 10.5-kb human GM-CSF transgene was indistinguishable from mouse GM-CSF expression (99% ± 56% SD). In contrast, a 9.8-kb transgene lacking just the enhancer had a significantly reduced (P = 0.004) and more variable level of activity (29% ± 89% SD). From these studies we conclude that the GM-CSF enhancer is required for the correct copy number-dependent expression of the human GM-CSF gene and that the GM-CSF gene is regulated independently from DNA elements associated with the closely linked IL-3 gene or other members of the cytokine gene cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunological functions were analyzed in mice lacking granulocyte/macrophage colony-stimulating factor (GM-CSF). The response of splenic T cells to allo-antigens, anti-mouse CD3 mAb, interleukin 2 (IL-2), or concanavalin A was comparable in GM-CSF +/+ and GM-CSF −/− mice. To investigate the responses of CD8+ and CD4+ T cells against exogenous antigens, mice were immunized with ovalbumin peptide or with keyhole limpet hemocyanin (KLH). Cytotoxic CD8+ T cells with specificity for ovalbumin peptide could not be induced in GM-CSF −/− mice. After immunization with KLH, there was a delay in IgG generation, particularly IgG2a, in GM-CSF −/− mice. Purified CD4+ T cells from GM-CSF −/− mice immunized with KLH showed impaired proliferative responses and produced low amounts of interferon-γ (IFN-γ) and IL-4 when KLH-pulsed B cells or spleen cells were used as antigen presenting cells (APC). When enriched dendritic cells (DC) were used as APC, CD4+ T cells from GM-CSF −/− mice proliferated as well as those from GM-CSF +/+ mice and produced high amounts of IFN-γ and IL-4. To analyze the rescue effect of DC on CD4+ T cells, supernatants from (i) CD4+ T cells cultured with KLH-pulsed DC or (ii) DC cultured with recombinant GM-CSF were transferred to cultures of CD4+ T cells and KLH-pulsed spleen cells from GM-CSF −/− mice. Supernatants from both DC sources contained a factor or factors that restored proliferative responses and IFN-γ production of CD4+ T cells from GM-CSF −/− mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) induces proliferation and sustains the viability of the mouse interleukin-3-dependent cell line BA/F3 expressing the hGM-CSF receptor. Analysis of the antiapoptosis activity of GM-CSF receptor βc mutants showed that box1 but not the C-terminal region containing tyrosine residues is essential for GM-CSF-dependent antiapoptotic activity. Because βc mutants, which activate Janus kinase 2 but neither signal transducer and activator of transcription 5 nor the MAPK cascade sustain antiapoptosis activity, involvement of Janus kinase 2, excluding the above molecules, in antiapoptosis activity seems likely. GM-CSF activates phosphoinositide-3-OH kinase as well as Akt, and activation of both was suppressed by addition of wortmannin. Interestingly, wortmannin did not affect GM-CSF-dependent antiapoptosis, thus indicating that the phosphoinositide-3-OH kinase pathway is not essential for cell surivival. Analysis using the tyrosine kinase inhibitor genistein and a MAPK/extracellular signal-regulated kinase (ERK) kinase 1 inhibitor, PD98059, indicates that activation of either the genistein-sensitive signaling pathway or the PD98059-sensitive signaling pathway from βc may be sufficient to suppress apoptosis. Wild-type and a βc mutant lacking tyrosine residues can induce expression of c-myc and bcl-xL genes; however, drug sensitivities for activation of these genes differ from those for antiapoptosis activity of GM-CSF, which means that these gene products may be involved yet are inadequate to promote cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idiotype of the Ig expressed by a B-cell malignancy (Id) can serve as a unique tumor-specific antigen and as a model for cancer vaccine development. In murine models of Id vaccination, formulation of syngeneic Id with carrier proteins or adjuvants induces an anti-idiotypic antibody response. However, inducing a potent cell-mediated response to this weak antigen instead would be highly desirable. In the 38C13 lymphoma model, we observed that low doses of free granulocyte/macrophage colony-stimulating factor (GM-CSF) 10,000 units i.p. or locally s.c. daily for 4 days significantly enhanced protective antitumor immunity induced by s.c. Id-keyhole limpet hemocyanin (KLH) immunization. This effect was critically dependent upon effector CD4+ and CD8+ T cells and was not associated with any increased anti-idiotypic antibody production. Lymphocytes from spleens and draining lymph nodes of mice primed with Id-KLH plus GM-CSF, but not with Id-KLH alone, demonstrated significant proliferation to Id in vitro without any biased production of interferon gamma or interleukin 4 protein or mRNA. As a further demonstration of potency, 50% of mice immunized with Id-KLH plus GM-CSF on the same day as challenge with a large s.c. tumor inoculum remained tumor-free at day 80, compared with 17% for Id-KLH alone, when immunization was combined with cyclophosphamide. Taken together, these results demonstrate that GM-CSF can significantly enhance the immunogenicity of a defined self-antigen and that this effect is mediated exclusively by activating the T-cell arm of the immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-rel protooncogene encodes a subunit of the NF-kappa B-like family of transcription factors. Mice lacking Rel are defective in mitogenic activation of B and T lymphocytes and display impaired humoral immunity. In an attempt to identify changes in gene expression that accompany the T-cell stimulation defects associated with the loss of Rel, we have examined the expression of cell surface activation markers and cytokine production in mitogen-stimulated Rel-/- T cells. The expression of cell surface markers including the interleukin 2 receptor alpha (IL-2R alpha) chain (CD25), CD69 and L-selectin (CD62) is normal in mitogen-activated Rel-/- T cells, but cytokine production is impaired. In Rel-/- splenic T cell cultures stimulated with phorbol 12-myristate 13-acetate and ionomycin, the levels of IL-3, IL-5, granulocyte- macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) were only 2- to 3-fold lower compared with normal T cells. In contrast, anti-CD3 and anti-CD28 stimulated Rel-/- T cells, which fail to proliferate, make little or no detectable cytokines. Exogenous IL-2, which restitutes the proliferative response of the anti-CD3- and anti-CD28-treated Rel-/- T cells, restores production of IL-5, TNF-alpha, and IFN-gamma, but not IL-3 and GM-CSF expression to approximately normal levels. In contrast to mitogen-activated Rel-/- T cells, lipopolysaccharide-stimulated Rel-/- macrophages produce higher than normal levels of GM-CSF. These findings establish that Rel can function as an activator or repressor of gene expression and is required by T lymphocytes for production of IL-3 and GM-CSF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently described the development in vitro of cells with granules characteristic of eosinophils and basophils (hybrid granulocytes) from normal human cord blood mononuclear cells cultured for 14 days with recombinant human (rh) interleukin (IL)-3, rhIL-5, and a soluble basement membrane, Matrigel. Hybrid granulocytes constitutively produced granulocyte/macrophage colony-stimulating factor (GM-CSF) and rapidly developed into eosinophils after the exogenous cytokines and Matrigel were removed. To characterize the developmental progression of hybrid granulocytes, cells were maintained for an additional 14 days in medium containing rhIL-3, rhIL-5, and Matrigel. After 28 days, 73% +/- 1% (mean +/- SEM; n = 6) of the nonadherent cells were mononuclear eosinophils, 13% +/- 3% were eosinophils with two or more nuclear lobes, 13% +/- 4% were hybrid granulocytes, and 0.2% +/- 0.1% were basophils. More than 90% of the mononuclear eosinophils were hypodense as determined by centrifugation through metrizamide gradients. After an additional 5 days of culture in medium without exogenous cytokines, 65% +/- 3% (n = 5) of the 28-day cells excluded trypan blue. In contrast, 2% +/- 1% of freshly isolated peripheral blood eosinophils survived 5 days of culture without exogenous cytokines (n = 5). Fifty percent conditioned medium from in vitro derived 28-day mononuclear eosinophils and 14-day hybrid granulocytes maintained the survival of 60% +/- 7% and 77% +/- 7%, respectively, of freshly isolated peripheral blood eosinophils for 72 h, compared with 20% +/- 8% survival in medium alone (n = 3). The eosinophil viability-sustaining activity of 50% mononuclear eosinophil-conditioned medium was neutralized with a GM-CSF antibody. A total of 88% of the 28-day cells exhibited immunochemical staining for GM-CSF. Thus, during eosinophilopoiesis, both hybrid eosinophil/basophil intermediates and immature mononuclear eosinophils exhibit autocrine regulation of viability due to constitutive production of GM-CSF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene targeting was used to create mice with a null mutation of the gene encoding the common beta subunit (beta C) of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3; multi-CSF), and interleukin 5 (IL-5) receptor complexes (beta C-/- mice). High-affinity binding of GM-CSF was abolished in beta C-/- bone marrow cells, while cells from heterozygous animals (beta C+/- mice) showed an intermediate number of high-affinity receptors. Binding of IL-3 was unaffected, confirming that the IL-3-specific beta chain remained intact. Eosinophil numbers in peripheral blood and bone marrow of beta C-/- animals were reduced, while other hematological parameters were normal. In clonal cultures of beta C-/- bone marrow cells, even high concentrations of GM-CSF and IL-5 failed to stimulate colony formation, but the cells exhibited normal quantitative responsiveness to stimulation by IL-3 and other growth factors. beta C-/- mice exhibited normal development and survived to young adult life, although they developed pulmonary peribronchovascular lymphoid infiltrates and areas resembling alveolar proteinosis. There was no detectable difference in the systemic clearance and distribution of GM-CSF between beta C-/- and wild-type littermates. The data establish that beta C is normally limiting for high-affinity binding of GM-CSF and demonstrate that systemic clearance of GM-CSF is not mediated via such high-affinity receptor complexes.