991 resultados para gold nanoparticle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe herein simple and sensitive aptamer-based colorimetric sensing of protein (alpha-thrombin in this work) using unmodified gold nanoparticle probes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational changes of bovine serum albumin (BSA) in the albumin:gold nanoparticle bioconjugates were investigated in detail by various spectroscopic techniques including UV-vis absorption, fluorescence, circular dichroism, and Fourier transform infrared spectroscopies. Our studies suggested that albumin in the bioconjugates that was prepared by the common adsorption method underwent substantial conformational changes at both secondary and tertiary structure levels. BSA was found to adopt a more flexible conformational state on the boundary surface of gold nanoparticles as a result of the conformational changes in the bioconjugates. The conformational changes at pH 3.8, 7.0, and 9.0, which corresponded to different isomeric forms of albumin, were investigated, respectively, to probe the pH effect on the conformational changes of BSA in the bioconjugates. The results showed that the pH of the medium influenced the changes greatly and that fluorescence and circular dichroism studies further indicated that the changes were larger at higher pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the development of a new class of kinase microarray for the detection of kinase inhibition based on marking peptide phosphorylation/biotinylation events by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate-dependent protein kinase (PKA), and its well-known substrate, kemptide, were used for the purpose of monitoring phosphorylation and inhibition. As expected, highly selective inhibition of PKA is demonstrated with the four inhibitors: H89, HA1077, mallotoxin, and KN62. Furthermore, an inhibition assay demonstrates the ability to detect kinase inhibition as well as derive IC50 (half-maximal inhibitory concentration) plots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rewritable polymer memory device based on gold nanoparticle doped poly (N-vinylcarbazole) (PVK), which can be easily fabricated by simple spin coating, has been described. An electrical bistable phenomenon is observed in the current-voltage characteristics of this device, and it is found that the electrical bistability is repeatable by proper writing voltage and erasing voltage. The unique behavior of the devices provides an interesting approach such that doping nanoparticles in polymer can be used to realize high performance nanovolatile polymer memory devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-walled carbon nanotube (MWCNT)/thionine/gold nanoparticle composites were prepared by binding gold nanoparticles to the surfaces of thionine-coated carbon nanotubes. TEM images show gold nanoparticles distributed uniformly on nanotube walls and ends. UV-Vis, Raman, FT-IR, and zeta potential measurements were used to examine the properties of the resulting products. The composites demonstrate significant electrocatalytic activity for oxygen reduction. Although only gold nanoparticles were investigated here, the method could be easily extended to attach other metallic nanoparticles to the sidewalls of carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple method has been developed to assemble gold nanoparticles to generate 1D assemblies by the assistance of silver ions. The lengths of nanoparticle chains can be controlled by adjusting the content of silver ions in the system. The assembly procedure of gold nanoparticles chains requires no template. The gold nanoparticle chains were characterized using TEM and XPS techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deliberate tailoring of nanostructured metallic catalysts at the monolayer-level is an ongoing challenge and could lead to new electronic and catalytic properties, since surface-catalyzed reactions are extremely sensitive to the atomic-level details of the catalytic surface. In this article, we present a novel electrochemical strategy to nanoparticle-based catalyst design using the recently developed underpotential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt2+ yielded a uniform Pt layer on colloid gold surfaces. The ultrathin (nominally monolayer-level) Pt coating of the novel nanostructured particles was confirmed by cyclic voltammetry and X-ray photoelectron spectra (XPS). The present results demonstrate that ultrathin Pt coating effects efficiently and behaves as the nanostructured monometallic Pt for electrocatalytic oxygen reduction, and also shows size-dependent, tunable electrocatalytic ability. The as-prepared ultrathin Pt-coated Au nanoparticle monolayer electrodes reduce O-2 predominantly by four electrons to H2O, as confirmed by the rotating ring-disk electrode (RRDE) technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method for the fabrication of gold nanoparticle multilayer films based on the covalent-bonding interaction between boronic acid and polyols, poly(vinyl alcohol) (PVA), was developed. The multilayer buildup was monitored by UV-vis absorbance, spectroscopy, which showed a linear increase of the film absorbance with the number of adsorbed Au layers and indicated the stepwise and uniform assembling process. The atomic force microscopy (AFM) image showed that a compact gold multilayer thin film was successfully assembled. The residual boronic acid group on the surface of thin film Could incorporate glycosylated-protein horseradish peroxidase (HRP), and good catalytic activity for H2O2 could be observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subsequent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolution of them in an acidic solution and the indirect determination of the dissolved Ag+ ions by anodic stripping voltammetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample. The method was evaluated by means of a noncompetitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0.2 ng/ mL. The high performance of the method is related to the sensitive ASV determination of silver(I) at a carbon fiber microelectrode and to the release of a large number of Ag+ ions from each silver shell anchored on the analyte(goat IgG).