938 resultados para glutathione transferase M1


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25,15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mLL(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill`s catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde. MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mLL(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mLL(-1) diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims
Cyclophosphamide (CTX) is an established treatment of severe systemic lupus erythematosus (SLE). Cytotoxic CTX metabolites are mainly detoxified by multiple glutathione S-transferases (GSTs). However, data are lacking on the relationship between the short-term side-effects of CTX therapy and GST genotypes. In the present study, the effects of common GSTM1, GSTT1, and GSTP1 genetic mutations on the severity of myelosuppression, gastrointestinal (GI) toxicity, and infection incidences induced by pulsed CTX therapy were evaluated in patients SLE.
Methods
DNA was extracted from peripheral leucocytes in patients with confirmed SLE diagnosis (n = 102). GSTM1 and GSTT1 null mutations were analyzed by a polymerase chain reaction (PCR)-multiplex procedure, whereas the GSTP1 codon 105 polymorphism (Ile→Val) was analyzed by a PCR-restriction fragment length polymorphism (RFLP) assay.
Results
Our study demonstrated that SLE patients carrying the genotypes with GSTP1 codon 105 mutation [GSTP1*-105I/V (heterozygote) and GSTP1*-105 V/V (homozygote)] had an increased risk of myelotoxicity when treated with pulsed high-dose CTX therapy (Odds ratio (OR) 5.00, 95% confidence interval (CI) 1.96, 12.76); especially in patients younger than 30 years (OR 7.50, 95% CI 2.14, 26.24), or in patients treated with a total CTX dose greater than 1.0 g (OR 12.88, 95% CI 3.16, 52.57). Similarly, patients with these genotypes (GSTP1*I/V and GSTP1*V/V) also had an increased risk of GI toxicity when treated with an initial pulsed high-dose CTX regimen (OR 3.33, 95% CI 1.03, 10.79). However, GSTM1 and GSTT1 null mutations did not significantly alter the risks of these short-term side-effects of pulsed high-dose CTX therapy in SLE patients.
Conclusions
The GSTP1 codon 105 polymorphism, but not GSTM1 or GSTT1 null mutations, significantly increased the risks of short-term side-effects of pulsed high-dose CTX therapy in SLE patients. Because of the lack of selective substrates for a GST enzyme phenotyping study, timely detection of this mutation on codon 105 may assist in optimizing pulsed high-dose CTX therapy in SLE patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 angstrom, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 angstrom resolution on a rotating-anode X-ray source.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Taking into consideration that glutatione S-transferase (GST) and cellular proliferation play a crucial role during carcinogenesis, the goal of this study was to investigate the expression of placental GST, called GST-P, and proliferating cellular nuclear antigen (PCNA) by means of immunohistochemistry during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide (4NQO). This is a useful model for studying oral squamous cell carcinoma phase by phase. Male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution by drinking water for 4, 12 or 20 weeks. Ten animals were used as negative control. GST-P positive foci were detected in non-neoplastic oral cells at 4 weeks of 4NQO administration. In the same way, GST-P positive cells were detected in pre-neoplastic lesions and squamous cell carcinomas induced after 12 and 20 weeks-treatment, respectively. None of the control animals expressed GST-P positive cells. Regarding cellular proliferation, PCNA positive nuclei were higher at 12 and 20 weeks following 4NQO exposure (p < 0.05) when compared to negative control. These results suggest that the expression of GST-P is correlated with cellular proliferation, in which GST-P is associated with risk and progression of oral cancer, whereas PCNA is closely involved during neoplastic conversion. (c) 2007 Published by Elsevier GmbH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the fast growth of cancer research, new analytical methods are needed to measure anticancer drugs. This is usually accomplished by using sophisticated analytical instruments. Biosensors are attractive candidates for measuring anticancer drugs, but currently few biosensors can achieve this goal. In particular, it is challenging to have a general method to monitor various types of anticancer drugs with different structures. In this work, a biosensor was developed to detect anticancer drugs by modifying carbon paste electrodes with glutathione-s-transferase (GST) enzymes. GST is widely studied in the metabolism of xenobiotics and is a major contributing factor in resistance to anticancer drugs. The measurement of anticancer drugs is based on competition between 1-chloro-2,4-dinitrobenzene (CDNB) and the drugs for the GST enzyme in the electrochemical potential at 0.1 V vs. Ag/AgCl by square wave voltammetry (SWV) or using a colorimetric method. The sensor shows a detection limit of 8.8 mu M cisplatin and exhibits relatively long life time in daily measurements. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sickle cell anemia (SCA) shows a pathophysiology that involves multiple changes in sickle cell erythrocytes, vaso-occlusive episodes, hemolysis, activation of inflammatory mediators, endothelial cell dysfunction, and oxidative stress. These events complicate treatment and culminate in the development of manifestations such as anemia, pain crises and multiorgan dysfunction. The aim of this study was to evaluate, in SCA patients, oxidative stress and antioxidant capacity markers, correlating them to treatment with hydroxyurea (HU), β-globin haplotypes and glutathione S-transferase polymorphisms (GSTT1, GSTM1 and GSTP1), in comparison to a control group (CG). The study groups were composed of 48 individuals without hemoglobinopathies (CG), SCA patients treated with HU [AF (+HU), N = 13] and untreated SCA patients [AF (-HU), N = 15], after informed consent. The groups were analyzed using cytological, electrophoretic, chromatographic and molecular methods and information from medical records. The GSTM1 and GSTT1 polymorphisms were determined by multiplex PCR, while the GSTP1 polymorphism by PCR-RFLP. Biochemical parameters were measured using spectrophotometric methods [TBARS, TEAC and catalase (CAT) and GST activities] and a chromatographic method [glutathione (GSH)]. The fetal Hb (Hb F) levels observed in the SCA (+HU) group (10.9%) confirmed the already well-described pharmacological effect of HU, but the SCA (-HU) group also had high Hb F levels (6.1%), which may have been influenced by genetic factors not targeted in this study. We found a higher frequency of the Bantu haplotype (48.2%), followed by the Benin (32.1%) and also Cameroon haplotypes, rare in our population, and 19.7% of atypical haplotypes. The presence of Bantu haplotype was related to higher lipid peroxidation levels in patients, but also, it conferred a differential response to HU treatment, raising Hb F levels in 52.6% (P = 0.03). The protective effect of Hb F was confirmed, because the increase in their levels resulted in a 41.3% decrease in lipid peroxidation levels (r = -0.74, P = 0.0156). The genotypic frequency of the GST polymorphisms observed was similar to that of other studies in the Brazilian population, and its association with biochemical markers revealed a significant difference only for the GSTP1 polymorphism, where patients with genotype V/V showed higher GSH and TEAC levels (P = 0.04 and P = 0.03, respectively) compared to patients with genotype I/I. The TBARS levels were about five to eight times higher in the SCA (+HU) and SCA (-HU) groups, respectively, compared to controls, and HU produced a 35.2% decrease in lipid peroxidation levels in the SCA (+HU) group (P < 0.0001). Moreover, the SCA (+HU) group showed higher TEAC levels when compared to CG (P = 0.002). We did not find any significant difference in GST activity between the groups studied (P = 0.76), but CAT activity was about 17 and 30% lower in SCA (+HU) and SCA (-HU) groups, respectively (P < 0.00001). Plasma GSH levels were ~2 times higher in SCA patients than in the control group (P = 0.0005) and showed a positive correlation with TBARS levels, confirming its antioxidant function. HU treatment contributed to higher CAT activity and TEAC levels and lower lipid peroxidation, and its pharmacological effect showed a “haplotype-dependent” response. These findings may contribute to elucidating the potential of HU in ameliorating oxidative stress in SCA subjects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)