944 resultados para genetic control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic control of vegetative propagation traits was described for a second-generation, outbred, intersectional hybrid family (N = 208) derived from two species, Corymbia torelliana (F. Muell.) K.D. Hill & L.A.S. Johnson and Corymbia variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, which contrast for propagation characteristics and in their capacity to develop lignotubers. Large phenotypic variances were evident for rooting and most other propagation traits, with significant proportions attributable to differences between clones (broad-sense heritabilities 0.2-0.5). Bare root assessment of rooting rate and root quality parameters tended to have the highest heritabilities, whereas rooting percentage based on root emergence from pots and shoot production were intermediate. Root biomass and root initiation had the lowest heritabilities. Strong favourable genetic correlations were found between rooting percentage and root quality traits such as root biomass, volume, and length. Lignotuber development on a seedling was associated with low rooting and a tendency to poor root quality in cuttings and was in accord with the persistence of species parent types due to gametic phase disequilibrium. On average, nodal cuttings rooted more frequently and with higher quality root systems, but significant cutting type x genotype interaction indicated that for some clones, higher rooting rates were obtained from tips. Low germination, survival of seedlings, and rooting rates suggested strong hybrid breakdown in this family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of wheat rusts in north-eastern Australia has been based on resistance breeding since the early 1920s. It has been an enduring journey of discovery, disappointment, and achievement, which has culminated in a pool of knowledge and expertise upon which today's plant breeders can efficiently target durable resistance to the major rust diseases. This paper outlines significant advances in genetic control of rusts in the region, with particular emphasis on the invaluable role played by the University of Sydney rust control program and its influence on wheat breeding in the region and throughout Australia. This paper is part of ‘Global Landscapes in Cereal Rust Control’, see Aust. J. Agric. Res. Vol. 58, no. 6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Queensland, Australia, strawberries (Fragaria xananassa Duchesne) are grown in open fields and rainfall events can damage fruit. Cultivars that are resistant to rain damage may reduce losses and lower risk for the growers. However, little is known about the genetic control of resistance and in a subtropical climate, unpredictable rainfall events hamper evaluation. Rain damage was evaluated on seedling and clonal trials of one breeding population comprising 645 seedling genotypes and 94 clones and on a second clonal population comprising 46 clones from an earlier crossing to make preliminary estimates of heritability. The incidence of field damage from rainfall and damage after laboratory soaking was evaluated to determine if this soaking method could be used to evaluate resistance to rain damage. Narrow-sense heritability of resistance to rain damage calculated for seedlings was low (0.21 +/- 0.15) and not significantly different from zero; however, broad-sense heritability estimates were moderate in both seedlings (0.49 +/- 0.16) and clones (0.45 +/- 0.08) from the first population and similar in clones (0.56 +/- 0.21) from the second population. Immersion of fruit in deionized water produced symptoms consistent with rain damage in the field. Lengthening the duration of soaking of 'Festival' fruit in deionized water exponentially increased the proportion of damage to fruit ranging in ripeness from immature to ripe during the first 6-h period of soaking. When eight genotypes were evaluated, the proportion of sound fruit after soaking in deionized water in the laboratory for up to 5 h was linearly related (r(2) = 0.90) to the proportion of sound fruit in the field after 89 mm of rain. The proportion of sound fruit of the breeding genotype '2008-208' and 'Festival' under soaking (0.67, 0.60) and field (0.52, 0.43) evaluations, respectively, is about the same and these genotypes may be useful sources of resistance to rain damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetically controlled asynchrony in anthesis is an effective barrier to gene flow between planted and native forests. We investigated the degree of genetically controlled variation in the timing of key floral developmental stages in a major plantation species in subtropical Australia, Corymbia citriodora subsp. variegata K.D. Hill and L.A.S Johnson, and its relative C. maculata K.D. Hill and L.A.S. Johnson. Flowering observations were made in a common garden planting at Bonalbo in northern New South Wales in spring on 1855 trees from eight regions over three consecutive years, and monthly on a subset of 208 trees for 12 months. Peak anthesis time was stable over years and observations from translocated trees tended to be congruent with the observations in native stands, suggesting strong genetic control of anthesis time. A cluster of early flowering provenances was identified from the north-east of the Great Dividing Range. The recognition of a distinct flowering race from this region accorded well with earlier evidence of adaptive differentiation of populations from this region and geographically-structured genetic groupings in C. citriodora subsp. variegata. The early flowering northern race was more fecund, probably associated with its disease tolerance and greater vigour. Bud abundance fluctuated extensively at the regional level across 3 years suggesting bud abundance was more environmentally labile than timing of anthesis. Overall the level of flowering in the planted stand (age 12 years) was low (8–12% of assessed trees with open flowers), and was far lower than in nearby native stands. Low levels of flowering and asynchrony in peak anthesis between flowering races of C. citriodora subsp. variegata may partially mitigate a high likelihood of gene flow where the northern race is planted in the south of the species range neighbouring native stands

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key message: Evaluation of resistance toPyrenophora teresf.maculatain barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. Abstract: In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molluscan shells may display a variety of colors, which formation, inheritance, and evolutionary significance are not Well understood. Here we report a new variant of the Pacific abalone Haliotis discus hannai that displays a novel orange shell coloration (O-type) that is clearly distinguishable from the Wild green-shelled abalone (G-type). Controlled mating experiments between O- and G-type abalones demonstrated apparent Mendelian segregations (1:1 or 3:1) in shell colors in F-2 families, which support the notion that the O- and G-types are under strict genetic control at a single locus With a recessive o (for orange shell) allele and a dominant G (for green shell) allele. Feeding with different diets caused modifications of shell color within each genotype, ranging from orange to yellow for O-type and green to dark-brown for the G-type, without affecting the distinction between genotypes. A previously described bluish-purple (B-type) shell color was found in one of the putative oo X oG crosses, suggesting that the B-type may be it recessive allele belonging to the same locus. The new O-type variant had no effect on the growth of Pacific abalone on the early seed-stage. This Study demonstrates that shell color in Pacific abalone is subject to genetic control as well as dietary modification, and the latter probably offers selective advantages in camouflage and predator avoidance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration of arsenic (As) in rice grains has been identified as a risk to human health. The high proportion of inorganic species of As (As(i)) is of particular concern as it is a nonthreshold, class 1 human carcinogen. To be able to breed rice with low grain As, an understanding of genetic variation and the effect of different environments on genetic variation is needed. In this study, 13 cultivars grown at two field sites each in Bangladesh, India, and China are evaluated for grain As. There was a significant site, genotype, and site by genotype interaction for total grain As. Correlations were observed only between sites in Bangladesh and India, not between countries or within the Chinese sites. For seven cultivars the As was speciated which revealed significant effects of site, genotype, and site by genotype interaction for percentage As(i). Breeding low grain As cultivars that will have consistently low grain As and low As(i), over multiple environments using traditional breeding approaches may be difficult, although CT9993-5-10-1-M, Lemont, Azucena, and Te-qing in general had low grain As across the field sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic improvement in litter size in pigs has been substantial during the last 10-15 years. The number of teats on the sow must increase as well to meet the needs of the piglets, because each piglet needs access to its own teat. We applied a genetic heterogeneity model on teat numberin sows, and estimated medium-high heritability for teat number (0.5), but low heritability for residual variance (0.05), indicating that selection for reduced variance might have very limited effect. A numerically positive correlation (0.8) between additive genetic breeding values for mean and for variance was found, but because of the low heritability for residual variance, the variance will increase very slowly with the mean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seven new male-sterile mutants (ms7–ms13) of Arabidopsis thaliana (L.) Heynh. (ecotype columbia) are described that show a postmeiotic defect of microspore development. In ms9 mutants, microspores recently released from the tetrad appear irregular in shape and are often without exines. The earliest evidence of abnormality in ms12 mutants is degeneration of microspores that lack normal exine sculpturing, suggesting that the MS12 product is important in the formation of pollen exine. Teratomes (abnormally enlarged microsporocytes) are also occasionally present and each has a poorly developed exine. In ms7 mutant plants, the tapetal cytoplasm disintegrates at the late vacuolate microspore stage, apparently causing the degeneration of microspores and pollen grains. With ms8 mutants, the exine of the microspores appears similar to that of the wild type. However, intine development appears impaired and pollen grains rupture prior to maturity. In ms11 mutants, the first detectable abnormality appears at the mid to late vacuolate stage. The absence of fluorescence in the microspores and tapetal cells after staining with 4′,6-diamidino-2-phenylindole (DAPI) and the occasional presence of teratomes indicate degradation of DNA. Viable pollen from ms10 mutant plants is dehisced from anthers but appears to have surface abnormalities affecting interaction with the stigma. Pollen only germinates in high-humidity conditions or during in-vitro germination experiments. Mutant plants also have bright-green stems, suggesting that ms10 belongs to the eceriferum (cer) class of mutants. However, ms10 and cer6 are non-allelic. The ms13 mutant has a similar phenotype to ms10, suggesting is also an eceriferum mutation. Each of these seven mutants had a greater number of flowers than congenic male-fertile plants. The non-allelic nature of these mutants and their different developmental end-points indicate that seven different genes important for the later stages of pollen development have been identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have taken a mutational approach to identify genes important for male fertility in Arabidopsis thaliana and have isolated a number of nuclear male/ sterile mutants in which vegetative growth and female fertility are not altered. Here we describe detailed developmental analyses of four mutants, each of which defines a complementation group and has a distinct developmental end point. All four mutants represent premeiotic developmental lesions. In ms3, tapetum and middle layer hypertrophy result in the degeneration of microsporocytes. In ms4, microspore dyads persist for most of anther development as a result of impaired meiotic division. In ms5, degeneration occurs in all anther cells at an early stage of development. In ms15, both the tapetum and microsporocytes degenerate early in anther development. Each of these mutants had shorter filaments and a greater number of inflorescences than congenic male-fertile plants. The differences in the developmental phenotypes of these mutants, together with the non-allelic nature of the mutations indicate that four different genes important for pollen development, have been identified.