953 resultados para genetic polymorphism


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tobacco use is causally associated with head and neck squamous cell cancer (HNSCC). Here, we present the results of a case-control study that investigated the effects that the genetic variants of the cytochrome (CYP)1A1, CYP1B1, glutathione-S-transferase (GST)M1, GSTT1, and GSTP1 genes have on modifying the risk of smoking-related HNSCC. Allelisms of the CYP1A1, GSTT1, GSTM1, and GSTT1 genes alone were not associated with an increased risk. CYP1B1 codon 432 polymorphism was found to be a putative susceptibility factor in smoking-related HNSCC. The frequency of CYP1B1 polymorphism was significantly higher (P < 0.001) in the group of smoking cases when compared with smoking controls. Additionally, an odds ratio (OR) of 4.53 (2.62-7.98) was discovered when investigating smoking and nonsmoking cases for the susceptible genotype CYP1B1*2/*2, when compared with the presence of the genotype wild type. In combination with polymorphic variants of the GST genes, a synergistic-effect OR was observed. The calculated OR for the combined genotype CYP1B1*2/*2 and GSTM1*2/*2 was 12.8 (4.09-49.7). The calculated OR for the combined genotype was 13.4 (2.92-97.7) for CYP1B1*2/*2 and GSTT1*2/*2, and 24.1 (9.36-70.5) for the combination of CYP1B1*2/*2 and GSTT1-expressors. The impact of the polymorphic variants of the CYP1B1 gene on HNSCC risk is reflected by the strong association with the frequency of somatic mutations of the p53 gene. Smokers with susceptible genotype CYP1B1*2/*2 were 20 times more likely to show evidence of p53 mutations than were those with CYP1B1 wild type. Combined genotype analysis of CYP1B1 and GSTM1 or GSTT1 revealed interactive effects on the occurrence of p53 gene mutations. The results of the present study indicate that polymorphic variants of CYP1B1 relate significantly to the individual susceptibility of smokers to HNSCC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymorphisms of glutathione transferases (GST) are important genetic determinants of susceptibility to environmental carcinogens (Rebbeck, 1997). The GSTs are a multigene family of dimeric enzymes involved in detoxification, and, in a few cases, the bioactivation of a variety of xenobiotics (Hayes et al., 1995). The cytosolic GST enzyme family consists of four major classes of enzymes, referred to as alpha, mu, pi and theta. Several members of this family (for example, GSTM1, GSTT1 and GSTP1) are polymorphic in human populations (Wormhoudt et al., 1999). Molecular epidemiology studies have examined the role of GST polymorphisms as susceptibility factors for environmentally and/or occupationally induced cancers (Wormhoudt et al., 1999). In particular, case-control studies showed a relationship between the GSTM1 null genotype and the development of cancer in association with smoking habits, which has been shown for cancers of the respiratory and gastrointestinal tracts as well as other cancer types (Miller et al., 1997). Only a few molecular epidemiological studies addressed the role of GSTT1 and GSTP1 polymorphisms in cancer susceptibility. Since GSTP1 is a key player in biotransformation/bioactivation of benzo(a)pyrene, GSTP1 may be even more important than GSTM1 in the prevention of tobacco-induced cancers (Harries et al., 1997; Harris et al., 1998). To date, this relationship has not been sufficiently addressed in humans. Comprehensive molecular epidemiological studies may add to the current knowledge of the role of GST polymorphisms in cancer susceptibility and extent of the knowledge gained from approaches that used phenotyping, such as GSTM1 activity as it relates to trans-stilbene oxide, or polymerase chain reaction (PCR) based genotyping of polymorphic isoenzymes (Bell et al., 1993; Pemble et al., 1994; Harries et al., 1997).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conjugation of chemicals with glutathione (GSH) can lead to decreased or increased toxicity. A genetic deficiency in the GSH S-transferase μ class gene M1 has been hypothesized to lead to greater risk of lung cancer in smokers. Recently a gene deletion polymorphism involving the human θ enzyme T1 has been described; the enzyme is present in erythrocytes and can be readily assayed. A rat θ class enzyme, 5-5, has structural and catalytic similarity and the protein was expressed in the Salmonella typhimurium tester strain TA1535. Expression of the cDNA vector increased the mutagenicity of ethylene dibromide and several methylene dihalides. Mutations resulting from the known GSH S-transferase substrate 1,2-epoxy-3-(4′nitrophenoxy)propane were decreased in the presence of the transferase. Expression of transferase 5-5 increased mutations when 1,2,3,4-diepoxybutane (butadiene diepoxide), 4-bromo-1,2-epoxybutane, or 1,3-dichloracetone were added. The latter compound is a model for the putative 1,2-dibromo-3-chloropropane oxidation product 1-bromo-3-chloroacetone. These genotoxicity and genotyping assays may be of use in further studies of the roles of GSH S-transferase θ enzymes in bioactivation and detoxication and any changes in risk due to polymorphism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genotype distributions for GSTP1, GSTM1, and GSTT1 were determined in 91 patients with prostatic carcinoma and 135 patients with bladder carcinoma and compared with those in 127 abdominal surgery patients without malignancies. None of the genotypes differed significantly with respect to age or sex among controls or cancer patients. In the group of prostatic carcinoma patients, GSTT1 null allele homozygotes were more prevalent (25% in carcinoma patients vs 13% in controls, Fisher P=0.02, χ2 P = 0.02, OR = 2.31, CI = 1.17-4.59) and the combined M1-/T1-null genotype was also more frequent (9% vs 3%, χ2 P= 0.02, Fisher P = 0.03). Homozygosity for the GSTM1 null allele was more frequent among bladder carcinoma patients (59% in bladder carcinoma patients vs 45% in controls, Fisher P = 0.03, χ2 P = 0.02, OR = 1.76, CI = 1.08-2.88). In contrast to a previous report, no significant increase in the frequency of the GSTP1b allele was found in the tumor patients. Except for the combined GSTM1-/T1-null genotype in prostatic carcinoma, none of the combined genotypes showed a significant association with either of the cancers. These findings suggest that specific single polymorphic GST genes, that is GSTM1 in the case of bladder cancer and GSTT1 in the case of prostatic carcinoma, are most relevant for the development of these urological malignancies among the general population in Central Europe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N- (methyl)valine, MV; N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 μg CEV/1 blood; 6.7 and 6.7 μg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1+ individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Case reports of human accidental poisonings point to significant individual differences in human acrylonitrile metabolism and toxicity. A cohort of 59 persons with industrial handling of low levels of acrylonitrile has repetitively been studied from 1994 through 1999 as part of a medical surveillance programme. The analyses included adduct determinations of N-terminal N-(cyanoethyl)valine in haemoglobin and genotypings of the following cytochrome P-450 2E1 (CYP2E1) polymorphisms: G-1259C and C-1019T (two subjects heterozygous), A-316G (three subjects heterozygous), T-297A (15 subjects heterozygous), G-35T (eight subjects heterozygous), G4804A (two subjects heterozygous), T7668A (six subjects heterozygous). N-(Cyanoethyl)valine adduct levels were, if any, only slightly influenced by smoking and mainly determined by the external acrylonitrile exposures. The individual means and medians of N-(cyanoethyl)valine levels over the entire observation period were compared with the CYP2E1 variants (Wilcoxon rank sum test). No influences of the investigated CYP2E1 polymorphisms on the N-(cyanoethyl)valine levels appeared at the 5% level. However, there was a trend, at a level of P≃0.1, pointing to higher acrylonitrile-specific adduct levels in persons with the A-316G mutation. Higher adduct levels would be compatible with a slower CYP2E1-mediated metabolism of acrylonitrile and with lower extents of toxification to cyanide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective - To investigate the HLA class I associations of ankylosing spondylitis (AS) in the white population, with particular reference to HLA-B27 subtypes. Methods - HLA-B27 and -B60 typing was performed in 284 white patients with AS. Allele frequencies of HLA-B27 and HLA-B60 from 5926 white bone marrow donors were used for comparison. HLA-B27 subtyping was performed by single strand conformation polymorphism (SSCP) in all HLA-B27 positive AS patients, and 154 HLA-B27 positive ethnically matched blood donors. Results - The strong association of HLA-B27 and AS was confirmed (odds ratio (OR) 171, 95% confidence interval (CI) 135 to 218; p < 10-99). The association of HLA-B60 with AS was confirmed in HLA-B27 positive cases (OR 3.6, 95% CI 2.1 to 6.3; p < 5 x 10-5), and a similar association was demonstrated in HLA-B27 negative AS (OR 3.5, 95% CI 1.1 to 11.4; p < 0.05). No significant difference was observed in the frequencies of HLA-B27 allelic subtypes in patients and controls (HLA-B*2702, three of 172 patients v five of 154 controls; HLA-B*2705, 169 of 172 patients v 147 of 154 controls; HkA-B*2708, none of 172 patients v two of 154 controls), and no novel HLA-B27 alleles were detected. Conclusion - HLA-B27 and -B60 are associated with susceptibility to AS, but differences in BLA-B27 subtype do not affect susceptibility to AS in this white population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. To investigate the role of the gene NOD2 in susceptibility to, and clinical manifestations of, ankylosing spondylitis (AS). Methods. A case-control study of NOD2 polymorphisms known to be associated with Crohn's disease (CD) (Pro268 Ser, Arg702 Trp, GlY908 Arg, and Len1007fsinsC) was performed in 229 cases of primary AS with no diagnosed inflammatory bowel disease (IBD), 197 cases of AS associated with IBD (referred to as colitic spondylarthritis; comprising 78 with CD and 119 with ulcerative colitis [UC]), and 229 ethnically matched, healthy controls. Associations between NOD2 polymorphisms and several clinical features of AS, including disease severity assessed by questionnaire and age at spondylarthritis onset, were also investigated. Exclusion linkage mapping of chromosome 16 was performed in a separate group of 185 multicase families with AS. Results. An association was identified between Gly908 Arg and UC spondylarthritis (P = 0.016, odds ratio [OR] 4.6, 95% confidence interval [95% CI] 1.316), and a nonsignificant trend with a similar magnitude was observed in association with CD spondylarthritis (P = 0.08, OR 3.9, 95% CI 0.8-18). The Pro268Ser variant was inversely associated with UC spondylarthritis (P = 0.003, OR 0.55, 95% CI 0.37-0.82), but not with CD spondylarthritis. No association was demonstrated between NOD2 variants and primary AS, or between other variants of NOD2 and either UC or CD spondylarthritis. Carriage of the Pro268 Ser polymorphism was associated with greater disease activity as measured by the Bath Ankylosing Spondylitis Disease Activity Index (P = 0.002). Although patients with CD had a younger age at spondylarthritis onset than did those with UC (22.4 years versus 26.4 years; P = 0.01), no association was noted between the NOD2 variants linked with CD and age at spondylarthritis onset. In primary AS, the presence of a gene with a magnitude of association >2.0 was excluded (exclusion logarithm of odds score less than -2.0), and no association was observed with the microsatellite D16S3136. Conclusion. NOD2 variants do not significantly affect the risk of developing primary AS, but may influence susceptibility to, and clinical manifestations of, colitic spondylarthritis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. HLA-DRB1, a major genetic determinant of susceptibility to rheumatoid arthritis (RA), is located within 1,000 kb of the gene encoding tumor necrosis factor (TNF). Because certain HLA-DRB1*04 subtypes increase susceptibility to RA, investigation of the role of the TNF gene is complicated by linkage disequilibrium (LD) between TNF and DRB1 alleles. By adequately controlling for this LD, we aimed to investigate the presence of additional major histocompatibility complex (MHC) susceptibility genes. Methods. We identified 274 HLA-DRB1*04-positive cases of RA and 271 HLA-DRB1*04-positive population controls. Each subject was typed for 6 single-nucleotide polymorphisms within a 4.5-kb region encompassing TNF and lymphotoxin a (LTA). LTA-TNF haplotypes in these unrelated individuals were determined using a combination of family data and the PHASE software program. Results. Significant differences in LTA-TNF haplotype frequencies were observed between different subtypes of HLA-DRB1*04. The LTA-TNF haplotypes observed were very restricted, with only 4 haplotypes constituting 81% of all haplotypes present. Among individuals carrying DRB1*0401, the LTA-TNF 2 haplotype was significantly underrepresented in cases compared with controls (odds ratio 0.5 [95% confidence interval 0.3-0.8], P = 0.007), while in those with DRB1*0404, the opposite effect was observed (P = 0.007). Conclusion. These findings suggest that the MHC contains genetic elements outside the LTA-TNF region that modify the effect of HLA-DRB1 on susceptibility to RA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We thank Ploski and colleagues for their interest in our study. The explanation for the difference in our findings is a typographic error in Table 2 of our article, whereby the alleles for marker TNF ⫺1031 were labeled incorrectly...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated whether polymorphisms in PTHR1 are associated with bone mineral density (BMD), to determine whether the association of this gene with BMD was due to effects on attainment of peak bone mass or effects on subsequent bone loss. The PTHR1 gene, including its 14 exons, their exon-intron boundaries, and 1,500 bp of its promoter region, was screened for polymorphisms by denaturing high-performance liquid chromatography (dHPLC) and sequencing in 36 osteoporotic cases. Eleven single-nucleotide polymorphisms (SNPs), one tetranucleotide repeat, and one tetranucleotide deletion were identified. A cohort of 634 families, including 1,236 men (39%) and 1,926 women (61%) ascertained with probands with low BMD (Z< -2.0) and the Children in Focus subset of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (785 unrelated individuals, mean age 118 months), were genotyped for the five most informative SNPs (minor allele frequency >5%) and the tetranucleotide repeat. In our osteoporosis families, association was noted between lumbar spine BMD and alleles of a known functional tetranucleotide repeat (U4) in the PTHR1 promoter region (P = 0.042) and between two and three marker haplotypes of PTHR1 polymorphisms with lumbar spine, femoral neck, and total hip BMD (P = 0.021-0.047). This association was restricted to the youngest tertile of the population (age 16-39 years, P = 0.013-0.048). A similar association was found for the ALSPAC cohort: two marker haplotypes of SNPs A48609T and C52813T were associated with height (P = 0.006) and total body less head BMD (P = 0.02), corrected for age and gender, confirming the family findings. These findings suggest a role for PTHR1 variation in determining peak BMD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both ankylosing spondylitis (AS) and rheumatoid arthritis (RA) are common, highly heritable conditions, the pathogenesis of which are incompletely understood. Gene-mapping studies in both conditions have over the last couple of years made major breakthroughs in identifying the mechanisms by which these diseases occur. Considering RA, there is an over-representation of genes involved in TNF signalling and the NFκB pathway that have been shown to influence the disease risk. There is also considerable sharing of susceptibility genes between RA and other autoimmune diseases such as systemic lupus erythematosus, type 1 diabetes, autoimmune thyroid disease and celiac disease, with thus far little overlap with AS. In AS, genes involved in response to IL12/IL23, and in endoplasmic reticulum peptide presentation, have been identified, but a full genomewide association study has not yet been reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proinflammatory cytokine IL-17 has an important role in pathogenesis of several inflammatory diseases. In immune-mediated joint diseases, IL-17 can induce secretion of other proinflammatory cytokines such as IL-1, IL-6 and TNF, as well as matrix metalloproteinase enzymes, leading to inflammation, cartilage breakdown, osteoclastogenesis and bone erosion. In animal models of inflammatory arthritis, mice deficient in IL-17 are less susceptible to development of disease. The list of IL-17-secreting cells is rapidly growing, and mast cells have been suggested to be a dominant source of IL-17 in inflammatory joint disease. However, many other innate sources of IL-17 have been described in both inflammatory and autoinflammatory conditions, raising questions as to the role of mast cells in orchestrating joint inflammation. This article will critically assess the contribution of mast cells and other cell types to IL-17 production in the inflammatory milieu associated with inflammatory arthritis, understanding of which could facilitate targeted therapeutic approaches. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (P combined = 4.09 × 10-9; odds ratio (OR) = 1.21, 95% confidence interval (CI) =1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (P combined = 2.74 × 10-10; OR = 1.14, 95% CI = 1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus. © 2012 Nature America, Inc. All rights reserved.