993 resultados para flynn-Wall


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal degradation behaviour of rubber from six new Hevea brasiliensis clones (IAC 40, 56, 300, 301, 302 and 303) from São Paulo State, Brazil was studied by thermogravimetry using the Flynn-Wall-Ozawa approach to assess the kinetic parameters ( reaction order, activation energy and pre-exponential factor) of the decomposition process. This study indicated that the thermal behaviour is a complex multiple step process, which depends on the type of rubber Hevea clones studied. The rubber from these clones can be classified, following the order of decreasing thermal stability, as IAC 303 > 302 > 56 > 40 > 300 > 301.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对聚β一经基丁酸酷(PHB)加工窗口窄、脆性严重等不足,本论文采用在PHB分子链上接枝极性小分子顺丁烯二酸醉(MA)和将PHB与聚8一已内醋(PCL)进行醋交换的方法对其分子链进行化学修饰,试图通过PHB的分子结构变化改变其聚集态结构,从而使PHB在性能上有较大幅度的提高。获得的主要研究结果如下:1.本工作采用自由基引发聚合方法研究了PHB与MA的接枝反应。讨论了各种反应条件,如溶剂种类、单体浓度、引发剂浓度、反应时间和温度等对接枝反应的影响,确定了PHB接枝MA的最佳反应条件。采用对酸配基团进行化学滴定和~(13)C NMR方法对接枝产物的接枝率和结构进行了表征。结果表明,M八接枝到PHB的叔碳原子上,接枝率可以控制在0.2∽0.85%的范围内。2.采用DSC、WARD、POM和TGA等方法对PHB及其接枝顺丁烯二酸配共聚物(PHB-g-MA)的结晶行为、·热稳定性和生物降解特性进行了研究。结果表明:接枝产物的热稳定性明显优于PHB,热分解温度随接枝率不同提高了20-40℃。接枝后,MA基团阻碍了PHB的结晶,降低了PHB的结晶能力,使得PHB的结晶行为发生很大的变化。结晶温度降低,冷结晶温度升高,结晶焙略有下降。与PHB相比,PHB-g-MA的球晶环带结构变得清晰规整,随着接枝率的提高,球晶的环带宽度逐渐增加。在 DSC升温过程中PHB-g-MA发生重结晶,产生熔融双峰现象。但是WAXD的实验结果表明,PHB接枝MA并没有改变它的结晶结构。J . PHB接枝MA后,PHB的力学性能保持不变,并且MA基团能够促进PHB的生物降解和改善PHB的溶解性。4.采用FTIR和‘~1H NMR研究了PHB-g-MA的热分解机理。结果表明,PHB-g-MA的热分解机理与PHB相同:在高温条件下,PHB分子链的醋基部分形成六元环结构,断链时夺取亚甲基氢,生成竣基和双键两种端基。5.采用TGA方法选择不同的升温速率研究了PHB和不同接枝率的PHB-g-MA的热分解行为。PHB-g-MA的热分解温度随着接枝率的增加逐渐增加,然后逐渐下降。接枝率为0.56%时,PHB-g-MA的热分解温度最高,达到256.6℃。由Flynn-Wall-Ozawa方法得到的PHB的热分解活化能随着热失重率的增加而逐渐下降;而PHB-g-MA的热分解活化能随着接枝率和热失重率的不同,表现出不同的规律。接枝率为0.56%时,它的热分解活化能达到最大,为116.51kJ/mol.采用DSC方法对PHB和PHB-g-MA的等温结晶动力学和熔融行为进行了研究。用Avrarnl方程分析的结果表明,MA的引入使得PHB的结晶能力下降,但是并没有改变它的结晶成核机理和生长方式。随着接枝率的增加,结晶活化能增加。等温结晶后的PHB-g-MA表现出双熔融行为,这是在升温过程中发生熔融重结晶的结果。这种熔融行为不仅与样品的接枝率有关,而且也会受到结晶温度的影响7.在不同的冷却速率下用DSC方法研究了PHB和PHB-g-MA的非等温结晶动力学和熔融行为。结果表明,PHB和PHB-g-MA在非等温结晶过程中的结晶行为与冷却速率和接枝率密切相关。用Jeziorny方法改进的Avrami方程分析了PHB和PHB-g-MA的非等温结晶行为。当冷却速率较低时,PHB-9-MA的结晶机理与PHB不同。非等温结晶后的PHB-g-MA的熔融行为表现出熔融双峰,这是在升温过程中发生熔融重结晶的结果。8.用DSC方法研究了甲壳胺(CS)的热行为,测得CS的玻璃化转变温度(Tg)为80.4'C。考察了不同组成的PHB/CS和PHB-g-MA/CS共混体系的热行为。在PHB/CS=20/80, 40/60的共混体系中有单一的Tg出现;而 PHB-g-MA/CS=20/80, 40/60, 60/40的共混体系中也有单一的Tgo随着共混体系中PHB含量的减少,T_g逐渐增加,表明这些共混体系具有相容性。在共混体系中,随着CS含量的增加,PHB和PHB-g-MA组分的熔点和熔融烩显著降低。与对PHB相比,CS对PHB-g-MA熔点和熔融焙的抑止作用更大。9.通过FTIR, WAXD和XP S研究了相容共混体系中PHB, PHB-g-MA与CS组.分间的特殊相互作用。FTIR结果表明两组.分间形成较弱的氢键。这种氢键作用比CS自身分子内的氢键作用小,以至于很难“破坏”CS自身的聚集态结构,但是它可以“扰乱”PHB, PHB-g-MA和CS原有的结晶形貌。这一结果被WAXD进一步证实。XPS的结果清楚地表明分子间氢键作用是通过CS中的-NH_2与PHB-g-MA的C=O产生的。在PHB分子链中接枝MA基团,可以增强这种相互作用,使PHB-g-MAICS-共混体系的Nls和C1s结合能和谱型发生明显改变。10.用熔融法和溶液法将PHB和PCL进行醋交换反应,制备PHB和PCL的共聚醋(PHB-co-PCL).讨论了各种反应条件,如组分、反应时间和温度、催化剂种类和用量等对醋交换反应的影响。采用~(13)C NMR和FTIR方法对醋交换产物的结构进行了表征。结果表明,提高反应温度和延长反应时间有利于酷交换反应的发生。调整反应条件,共聚酷中PCL的含量可以控制在0.95-4.81%的范围内。在本实验条件下,制备的PHB-co-PCL均为嵌段共聚物。11.采用DSC、WARD、POM和TGA等方法对PHB-co-PCL的热行为、晶体结构和热稳定性进行了研究。随着酷交换量的增加,PHB-co-PCL的结晶行为发生很大的变化。冷结晶温度、结晶一温度和熔点均降低。并且 PHB-co-PCL在升温过程中表现出熔融双峰,这是共聚酷在结晶过程中结晶不完善导致在升温过程中发生熔融重结晶的结果,。PCL链段的引入并没有改变PHB的晶体结构,却使得共聚酷的结晶规整性下降。而且PHB-co-PCL的热稳定性基本保持不变。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetics of the thermal degradation of poly(propylene carbonate) (PPC) were investigated with different kinetic methods with data from thermogravimetric analysis under dynamic conditions. The apparent activation energies obtained with different integral methods (Ozawa-Flynn-Wall and Coats-Redfern) were consistent with the values obtained with the Kinssinger method (99.93 kJ/mol). The solid-state decomposition process was a sigmoidal A(3) type in terms of the Coats-Redfern and Phadnis-Deshpande results. The influence of the heating rate on the thermal decomposition temperature was also studied. The derivative thermogravimetry curves of PPC confirmed only one weight-loss step.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal decomposition mechanism of maleated poly(3-hydroxybutyrate) (PHB) was investigated by FTIR and H-1 NMR. The results of experiments showed that the random chain scission of maleated PHB obeyed the six-membered ring ester decomposition process. The thermal decomposition behavior of PHB and maleated PHB with different graft degree were studied by thermogravimetry (TGA) using various heating-up rates. The thermal stability of maleated PHB was evidently better than that of PHB. With increase in graft degree, the thermal decomposition temperature of maleated PHB gradually increased and then declined. Activation energy E. as a kinetic parameter of thermal decomposition was estimated by the Flynn-Wall-Ozawa and Kissinger methods, respectively. It could be seen that approximately equal values of activation energy were obtained by both methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoparticies have been widely used to enhance the properties of natural rubber (NR). In the present paper a novel nanocomposite was developed by blending nano-ZnO slurry with prevulcanized NR latex, and the thermal degradation process of pure NR and NR/ZnO nanocomposites with different nano-ZnO loading was studied with a Perkin Elemer TGA-7 thermogravimetric analyzer. The thermal degradation parameters of NR/ZnO (2 parts ZnO per hundred dlY rubber) at different heating rates (Bs) were studied. The results show that the thermal degradation of pure NR and NR/ZnO nanocomposites in nitrogen is a one-step reaction. The degradation temperatures of NR/ZnO nanocomposite increase with an increasing B. The peak height (Rp) on the differential thermogravimetric curve increases with the increase of B. The degradation rates are not affected significantly by B, and the average values of thermal degradation rate Cp and Cf are 44.42 % and 81.04 %, respectively. The thermal degradation kinetic parameters are calculated with Ozawa-Flynn-Wall method. The activation energy (E) and the frequency factor (A) vary with ecomposition degree, and can be divided into three phases corresponding to the volatilization of low-molecular-weight materials, the thermal degradation ofNR main chains and the decomposition of residual carbon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid lipid nanoparticles (SLNs), loaded and unloaded with praziquantel (PRZ-load SLN and PRZ-unload SLN) were prepared by two different procedures: (a) oil-in-water hot microemulsion method, obtaining at 70 degrees C an optically transparent blend composed of surfactant, co-surfactant, and water; and (b) oil-in-water microemulsion method, dissolving the lipid in an immiscible organic solvent, emulsified in water containing surfactants and co-surfactant, and then evaporated under reduced pressure at 50 degrees C. The mean diameter, polydispersity index (PdI), and zeta potential were 187 to 665 nm, 0.300 to 0.655, and -25 to -28 mV respectively, depending on the preparation method. The components, binary mixture, SLNs loaded and unloaded with PRZ, and physical mixture were evaluated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The non-isothermal isoconversional Flynn-Wall-Ozawa method was used to determine the kinetic parameters associated with the thermal decomposition of the samples. The experimental data indicated a linear relationship between the apparent activation energy E and the pre-exponential factor A, also called the kinetic compensation effect (KCE), allowing us to determine the stability with respect to the preparation method. Loading with PRZ increased the thermal stability of the SLNs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent interest in obtaining functionalized nanoporous materials for applications such as heterogeneous catalysts and adsorption of CO2 has increased today. In the latter application, the introduction of amino groups such as present in the chitosan (CS), in the nanoporous materials like SBA-15 to generate specific interactions with CO2 has gained importance. In this work were performed to hydrothermal synthesis of SBA-15 and subsequent impregnation of the CS in the support mesoporous by the method of the wet impregnation. The materials were characterized by TG/DTG, DSC, XRD, SEM, FTIR and adsorption / desorption of N2. The XRD showed that the ordered structure of the support SBA-15 was preserved after the impregnation and calculations have shown that the average pore diameter (Dp) and / or the average wall thickness (wt) have been changed due to introduction of the CS in the samples functionalized. The curves of TG and DSC data corroborates the XRD, indicating the presence of CS in the nanoporous structure of SBA-15, as well as micrographs of samples, which allowed the display state of aggregation of the material obtained. The characteristics of bands absorption in the region of the CS in the FTIR were identified and interpreted in the samples functionalized, confirming the further characterization. Measurements showed that the BET surface area decreases in the functionalized samples, indicating the successive incorporation of the polymer in the nanoporous support. The activation energy apparent (Ea) for the process of thermal degradation of CS in the impregnated support was determined by the methods of kinetic freedom Vyazovkin and Ozawa-Flynn-Wall with the results indicating that the sample functionalized CS/SBA-15 2,5 % was decrease of the Ea in their degradation of about 10% compared to 1,0 % CS/SBA-15 sample

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the increasing search for alternative sources of natural rubber (NR) whose properties are similar to Hevea brasiliesis, several sources have been studied in the past few years. Among them, Mangabeira (Hancornia speciosa Gomes), which is native to Amazon rainforest and other regions of Brazil, has a potential as another viable rubber source. As a continuation of a series of comparative studies between Hancornia and Hevea (clone RRIM 600) these two species by our research team, their thermal behavior was analyzed by thermogravimetry (TG) using Flynn-Wall-Ozawa's approach in order to obtain kinetic parameters (reaction order, pre-exponential factor and activation energy) of the decomposition process. Results indicated that the thermal behavior of NR from Hancornia was comparable to Hevea with some differences observed as follows: reaction order for Hancornia was higher than for Hevea at the beginning of degradation and very close for temperatures over 350 A degrees C; activation energy and pre-exponential factor had the same trend, i.e., increased with increasing degree of conversion remaining almost constant between 20 and 70% and then increasing for higher degrees, although Hevea was slightly more thermally stable than Hancornia. These major influences in the degradation process in the early stage are attributed to differences in non-rubber constituents present in these two species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Layered Double Hydroxides has become extremely promising materials due to its range of applications, easily obtained in the laboratory and reusability after calcination, so the knowledge regarding their properties is of utmost importance. In this study were synthesized layered double hydroxides of two systems, Mg-Al and Zn-Al, and such materials were analyzed with X-ray diffraction and, from these data, we determined the volume density, planar atomic density, size crystallite, lattice parameters, interplanar spacing and interlayer space available. Such materials were also subjected to thermogravimetric analysis reasons for heating 5, 10, 20 and 25 ° C / min to determine kinetic parameters for the formation of metaphases HTD and HTB based on theoretical models Ozawa, Flynn-Wall Starink and Model Free Kinetics. In addition, the layered double hydroxides synthesized in this working ratios were calcined heating 2.5 ° C / min and 20 ° C / min, and tested for adsorption of nitrate anion in aqueous solution batch system at time intervals 5 min, 15 min, 30 min, 1h, 2h and 4h. Such calcined materials were also subjected to exposure to the atmosphere and at intervals of 1 week, 2 weeks and 1 month were analyzed by infrared spectroscopy to study the kinetics of regeneration determining structural called "memory effect"

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The organic fraction of urban solid residues disposed of in sanitary landfills during the decomposition yields biogas and leachate, which are sources of pollution. Leachate is a resultant liquid from the decomposition of substances contained in solid residues and it contains in its composition organic and inorganic substances. Literature shows an increase in the use of thermoanalytical techniques to study the samples with environmental interest, this way thermogravimetry is used in this research. Thermogravimetric studies (TG curves) carried out on leachate and residues shows similarities in the thermal behavior, although presenting complex composition. Residue samples were collected from landfills, composting plants, sewage treatment stations, leachate, which after treatment, were submitted for thermal analysis. Kinetic parameters were determined using the Flynn-Wall-Ozawa method. In this case they show little divergence between the kinetic parameter that can be attributed to different decomposition reaction and presence of organic compounds in different phases of the decomposition with structures modified during degradation process and also due to experimental conditions of analysis.