235 resultados para erythropoietin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure–function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To explore the effect of recombinant human erythropoietin (r-HuEPO) on apoptosis in rats after traumatic brain injury. Methods: A total of 48 traumatic brain-injured Sprague Dawley (SD) rats were obtained by improved Feeney’s traumatic brain injury model, and were randomly divided into four groups: normal salinetreated rats (control) and rats treated with r-HuEPO at doses of 1000 U/kg, 3000 U/kg and 5000 U/kg. Brain tissues were collected on the 7th day after trauma surgery. Apoptotic cells, and NF-kappa B (NFĸB)-, c-myc-, and Fas/Fasl-positive cells were identified in brain tissues by immunohistochemical assay. Results: After treatment with r-HuEPO (3000 and 5000 U/kg), expression of NF-κB and Fas/Fasl were significantly decreased (p < 0.05) compared to control rats, especially at the 5000 U/kg dose (p < 0.01). However, for c-myc, no significant difference was observed between r-HuEPO treatment and control groups (p > 0.05). Compared to the 1000 U/kg r-HuEPO group, Fas/Fasl expression levels were significantly lower in the 3000 and 5000 U/kg r-HuEPO groups (p < 0.05). Additionally, expression of NF-κB and Fasl in the 5000 U/kg r-HuEPO group was significantly lower than that in the 3000 U/kg r- HuEPO group (p < 0.05). Moreover, the number of apoptotic cells in the r-HuEPO group (5000 U/kg) was significantly lower than in the control group (p < 0.05). Conclusion: Thus, r-HuEPO may be beneficial for treating traumatic brain injury via inhibition of NFkappa B and Fas/Fasl expressions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renal anemia is a common complication of chronic renal failure caused by erythropoietin deficiency; targeting erythropoietin is a common approach to renal anemia treatment. This paper describes the role of erythropoietin and others drugs in renal anemia treatment, as well as the cause of erythropoietin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway.

METHODS: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C(6)] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis.

RESULTS: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects.

CONCLUSIONS: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review collects and summarises the biological applications of the element cobalt. Small amounts of the ferromagnetic metal can be found in rock, soil, plants and animals, but is mainly obtained as a by-product of nickel and copper mining, and is separated from the ores (mainly cobaltite, erythrite, glaucodot and skutterudite) using a variety of methods. Compounds of cobalt include several oxides, including: green cobalt(II) (CoO), blue cobalt(II,III) (Co3O4), and black cobalt(III) (Co2O3); four halides including pink cobalt(II) fluoride (CoF2), blue cobalt(II) chloride (CoCl2), green cobalt(II) bromide (CoBr2), and blue-black cobalt(II) iodide (CoI2). The main application of cobalt is in its metal form in cobalt-based super alloys, though other uses include lithium cobalt oxide batteries, chemical reaction catalyst, pigments and colouring, and radioisotopes in medicine. It is known to mimic hypoxia on the cellular level by stabilizing the α subunit of hypoxia inducing factor (HIF), when chemically applied as cobalt chloride (CoCl2). This is seen in many biological research applications, where it has shown to promote angiogenesis, erythropoiesis and anaerobic metabolism through the transcriptional activation of genes such as vascular endothelial growth factor (VEGF) and erythropoietin (EPO), contributing significantly to the pathophysiology of major categories of disease, such as myocardial, renal and cerebral ischaemia, high altitude related maladies and bone defects. As a necessary constituent for the formation of vitamin B12, it is essential to all animals, including humans, however excessive exposure can lead to tissue and cellular toxicity. Cobalt has been shown to provide promising potential in clinical applications, however further studies are necessary to clarify its role in hypoxia-responsive genes and the applications of cobalt-chloride treated tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study assessed the health-related quality of life (HRQoL), fatigue and physical activity levels of 28 persons with chronic kidney disease (CKD) on initial administration of an erythropoietin stimulating agent, and at 3 months, 6 months and 12 months. The sample comprised of 15 females and 13 males whose ages ranged from 31 to 84 years. Physical activity was measured using the Human Activity Profile (HAP): Self-care, Personal/Household work, Entertainment/Social, Independent exercise. Quality of life was measured using the SF-36 which gives scores on physical health (physical functioning, role-physical, bodily pain and general health) and mental health (vitality, social functioning, role-emotional and emotional well-being). Fatigue was measured by the Fatigue Severity Scale (FSS). Across all time points the renal sample engaged in considerably less HAP personal/household work activities and entertainment/social activities compared to healthy adults. The normative sample engaged in three times more independent/exercise activities compared to renal patients. One-way Repeated measures ANOVAs indicated a significant change over time for SF-36 scales of role physical, vitality, emotional well-being and overall mental health. There was a significant difference in fatigue levels over time [F(3,11) = 3.78, p<.05]. Fatigue was highest at baseline and lowest at 6 months. The more breathlessness the CKD patient reported, the fewer activities undertaken and the greater the reported level of fatigue. There were no significant age differences over time for fatigue or physical activity. Age differences were only found for SF-36 mental health at 3 months (t=-2.41, df=14, p<.05). Those younger than 65 years had lower emotional well-being compared to those aged over 65. Males had poorer physical health compared to females at 12 months. There were no significant gender differences on mental health at any time point. In the management of chronic kidney disease, early detection of a person’s inability to engage in routine activities due to fatigue is necessary. Early detection would enable timely interventions to optimise HRQoL and independent exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report an ultrasensitive method for detecting bio-active compounds in biological samples by means of functionalised nanoparticles interrogated by surface enhanced Raman spectroscopy (SERS). This method is applicable to the recovery and detection of many diagnostically important peptidyl analytes such as insulin, human growth hormone, growth factors (IGFs) and erythropoietin (EPO), as well as many small molecule analytes and metabolites. Our method, developed to detect EPO, demonstrates its utility in a complex yet well defined biological system. Recombinant human EPO (rhEPO) and EPO analogues have successfully been used to treat anaemia in end-stage renal failure, chronic disorders and infections, cancer and AIDS. Current methods for EPO testing are lengthy, laborious and relatively insensitive to low concentrations. In our rapid screening methodology, gold nanoparticles were functionalised with anti-EPO antibodies to provide very high selectivity towards the EPO protein in urine. These “smart sensor” nanoparticles interact with and trap EPO. Subsequent SERS screening allows for the detection and quantisation of ultra trace amounts (<<10-15 M) of EPO in urine samples with minimal sample preparation. We present data showing that the SERS spectrum differentiates between human endogenous EPO and rhEPO in unpurified urine, and potentially distinguishes between purified EPO isoforms. The elimination of sample preparation and direct screening in biological fluids significantly reduces the time required by current methods. Antibody recognition against a variety of biological targets and the availability of portable commercial SERS analysers for rapid onsite testing suggest broad diagnostic applicability in a flexible analytical platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims and objectives This study sought to determine the relationship between health related quality of life (HRQoL), fatigue and activity levels of people with anaemia secondary to chronic kidney disease (CKD) over a 12 month period following the introduction of an erythropoietin stimulating agent (ESA). Background CKD occurs in five stages and it is a complex chronic illness which severely impacts on an individual’s HRQoL, and ability to perform everyday activities. Fatigue is also a common symptom experienced by people with CKD. Design and methods Using a longitudinal repeated measures design, 28 people with CKD completed the SF-36, human activity profile and fatigue severity scale at the commencement of an ESA and then at 3, 6 and 12 months. Results Over a 12 month period, people reported a significant change in HRQoL in relation to role physical, vitality, mental health/emotional well-being and overall mental health. However activity levels did not significantly improve during that time. Both the amount of breathlessness and level of fatigue were highest at baseline and declined over time. Both fatigue and breathlessness were correlated with less reported general health over time. Conclusion Renal nurses, in dialysis units and CKD outpatient clinics, have repeated and frequent contact with people with CKD over long periods of time, and are in an ideal position to routinely assess fatigue and activity levels and to institute timely interventions. Early detection would enable timely nursing interventions to optimise HRQoL and independent activity. Relevance to Clinical Practice Drawing on rehabilitation nursing interventions could assist renal nurses to minimize the burden of fatigue and its impact on simple everyday activities and a person’s quality of life. These interventions are important for people who are living at home and could assist in lowering the burden on home support services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anaemia is a chronic problem in patients with renal insufficiency, especially chronic renal failure (CRF). In patients with CRF, anaemia is primarily due to a deficiency in erythropoietin (EPO), a glycoprotein growth factor that stimulates RBC production. The long-term effects and burden of anaemia for patients with CRF can be physical, emotional and financial. With efficient, systematic management of anaemia, clinicians have the potential to realise not only better clinical outcomes for CRF patients but also significant cost savings for them and the health system. During the last decade, significant advances have been made in clinicians’ understanding of how best to manage anaemia in this vulnerable population. One of the most important efforts to improve clinical practice has been the development of best practice guidelines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis developed a new method for measuring extremely low amounts of organic and biological molecules, using Surface enhanced Raman Spectroscopy. This method has many potential applications, e.g. medical diagnosis, public health, food provenance, antidoping, forensics and homeland security. The method development used caffeine as the small molecule example, and erythropoietin (EPO) as the large molecule. This method is much more sensitive and specific than currently used methods; rapid, simple and cost effective. The method can be used to detect target molecules in beverages and biological fluids without the usual preparation steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a proof of concept for a novel nanosensor for the detection of ultra-trace amounts of bio-active molecules in complex matrices. The nanosensor is comprised of gold nanoparticles with an ultra-thin silica shell and antibody surface attachment, which allows for the immobilization and direct detection of bio-active molecules by surface enhanced Raman spectroscopy (SERS) without requiring a Raman label. The ultra-thin passive layer (~1.3 nm thickness) prevents competing molecules from binding non-selectively to the gold surface without compromising the signal enhancement. The antibodies attached on the surface of the nanoparticles selectively bind to the target molecule with high affinity. The interaction between the nanosensor and the target analyte result in conformational rearrangements of the antibody binding sites, leading to significant changes in the surface enhanced Raman spectra of the nanoparticles when compared to the spectra of the un-reacted nanoparticles. Nanosensors of this design targeting the bio-active compounds erythropoietin and caffeine were able to detect ultra-trace amounts the analyte to the lower quantification limits of 3.5×10−13 M and 1×10−9 M, respectively.