979 resultados para dispersal corridors,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Using the rock-specialist agamid Ctenophorus caudicinctus as a model, we test hypothesized biogeographical dispersal corridors for lizards in the Australian arid zone (across the western sand deserts), and assess how these dispersal routes have shaped phylogeographical structuring. Location: Arid and semi-arid Australia. Methods: We sequenced a c. 1400 bp fragment of mtDNA (ND2) for 134 individuals of C. caudicinctus as well as a subset of each of the mtDNA clades for five nuclear loci (BDNF, BACH1, GAPD, NTF3, and PRLR). We used phylogenetic methods to assess biogeographical patterns within C. caudicinctus, including relaxed molecular clock analyses to estimate divergence times. Ecological niche modelling (Maxent) was employed to estimate the current distribution of suitable climatic envelopes for each lineage. Results: Phylogenetic analyses identified two deeply divergent mtDNA clades within C. caudicinctus - an eastern and western clade - separated by the Western Australian sand deserts. However, divergences pre-date the Pleistocene sand deserts. Phylogenetic analyses of the nuclear DNA data sets generally support major mtDNA clades, suggesting past connections between the western C. c. caudicinctus populations in far eastern Pilbara (EP) and the lineages to the east of the sand deserts. Ecological niche modelling supports the continued suitability of climatic conditions between the Central Ranges and the far EP for C. c. graafi. Main conclusions: Estimates of lineage ages provide evidence of divergence between eastern and western clades during the Miocene with subsequent secondary contact during the Pliocene. Our results suggest that this secondary contact occurred via dispersal between the Central Ranges and the far EP, rather than the more southerly Giles Corridor. These events precede the origins of the western sand deserts and divergence patterns instead appear associated with Miocene and Pliocene climate change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive Summary: Tropical marine ecosystems in the Caribbean region are inextricably linked through the movement of pollutants, nutrients, diseases, and other stressors, which threaten to further degrade coral reef communities. The magnitude of change that is occurring within the region is considerable, and solutions will require investigating pros and cons of networks of marine protected areas (MPAs), cooperation of neighboring countries, improved understanding of how external stressors degrade local marine resources, and ameliorating those stressors. Connectivity can be broadly defined as the exchange of materials (e.g., nutrients and pollutants), organisms, and genes and can be divided into: 1) genetic or evolutionary connectivity that concerns the exchange of organisms and genes, 2) demographic connectivity, which is the exchange of individuals among local groups, and 3) oceanographic connectivity, which includes flow of materials and circulation patterns and variability that underpin much of all these exchanges. Presently, we understand little about connectivity at specific locations beyond model outputs, and yet we must manage MPAs with connectivity in mind. A key to successful MPA management is how to most effectively work with scientists to acquire the information managers need. Oceanography connectivity is poorly understood, and even less is known about the shape of the dispersal curve for most species. Dispersal kernels differ for various systems, species, and life histories and are likely highly variable in space and time. Furthermore, the implications of different dispersal kernels on population dynamics and management of species is unknown. However, small dispersal kernels are the norm - not the exception. Linking patterns of dispersal to management options is difficult given the present state of knowledge. The behavioral component of larval dispersal has a major impact on where larvae settle. Individual larval behavior and life history details are required to produce meaningful simulations of population connectivity. Biological inputs are critical determinants of dispersal outcomes beyond what can be gleaned from models of passive dispersal. There is considerable temporal and spatial variation to connectivity patterns. New models are increasingly being developed, but these must be validated to understand upstream-downstream neighborhoods, dispersal corridors, stepping stones, and source/sink dynamics. At present, models are mainly useful for providing generalities and generating hypotheses. Low-technology approaches such as drifter vials and oceanographic drogues are useful, affordable options for understanding local connectivity. The “silver bullet” approach to MPA design may not be possible for several reasons. Genetic connectivity studies reveal divergent population genetic structures despite similar larval life histories. Historical stochasticity in reproduction and/or recruitment likely has important, longlasting consequences on present day genetic structure. (PDF has 200 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered. Conclusions/Significance: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main consequences of habitat loss and fragmentation is the increase in patch isolation and the consequent decrease in landscape connectivity. In this context, species persistence depends on their responses to this new landscape configuration, particularly on their capacity to move through the interhabitat matrix. Here, we aimed first to determine gap-crossing probabilities related to different gap widths for two forest birds (Thamnophilus caerulescens, Thamnophilidae, and Basileuterus culicivorus, Parulidae) from the Brazilian Atlantic rainforest. These values were defined with a playback technique and then used in analyses based on graph theory to determine functional connections among forest patches. Both species were capable of crossing forest gaps between patches, and these movements were related to gap width. The probability of crossing 40 m gaps was 50% for both species. This probability falls to 10% when the gaps are 60 m (for B. culicivorus) or 80 m (for T caerulescens). Actually, birds responded to stimulation about two times more distant inside forest trials (control) than in gap-crossing trials. Models that included gap-crossing capacity improved the explanatory power of species abundance variation in comparison to strictly structural models based merely on patch area and distance measurements. These results highlighted that even very simple functional connectivity measurements related to gap-crossing capacity can improve the understanding of the effect of habitat fragmentation on bird occurrence and abundance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat connectivity is important for the survival of species that occupy habitat patches too small to sustain an isolated population. A prominent example of such a species is the European bison (Bison bonasus), occurring only in small, isolated herds, and whose survival will depend on establishing larger, well-connected populations. Our goal here was to assess habitat connectivity of European bison in the Carpathians. We used an existing bison habitat suitability map and data on dispersal barriers to derive cost surfaces, representing the ability of bison to move across the landscape, and to delineate potential connections (as least-cost paths) between currently occupied and potential habitat patches. Graph theory tools were then employed to evaluate the connectivity of all potential habitat patches and their relative importance in the network. Our analysis showed that existing bison herds in Ukraine are isolated. However, we identified several groups of well-connected habitat patches in the Carpathians which could host a large population of European bison. Our analysis also located important dispersal corridors connecting existing herds, and several promising locations for future reintroductions (especially in the Eastern Carpathians) that should have a high priority for conservation efforts. In general, our approach indicates the most important elements within a landscape mosaic for providing and maintaining the overall connectivity of different habitat networks and thus offers a robust and powerful tool for conservation planning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As estradas e tráfego inerente surgem como a criação antrópica mais conspícua e penetrante na paisagem natural, sendo considerados os principais agentes causadores de fragmentação e destruição de habitats, assim como representam um obstáculo físico sem precedentes, limitando as relações directas entre os indivíduos, por diminuição da frequência de dispersão e aumento da mortalidade por atropelamento, impedindo o fluxo natural de genes e suscitando o aumento de fenómenos de inbreeding e perda de heterozigotia. Todos os impactes deletérios associados às rodovias são claramente perceptíveis em vertebrados, onde as aves de rapinas nocturnas não são excepção. Uma vez que estas rapaces beneficiam das suas bermas e orlas, como locais de poiso, nidificação ou como corredores de dispersão através da paisagem, são frequentemente vítimas de mortalidade por atropelamento em estradas, sendo esta problemática considerada actualmente uma das mais recentes e importantes formas de mortalidade não natural em rapinas nocturnas e vinculada como um dos maiores problemas de conservação que afecta este grupo. Não obstante, esse mútuo efeito de atracção/repulsa das estradas a estas rapaces, as rodovias criam uma barreira específica que limita a dinâmica, comportamento e densidade populacional das espécies residentes, reconhecendo-se que o isolamento daí resultante, pode comprometer a viabilidade populacional a longo prazo, podendo mesmo conduzir a altos riscos de extinção das populações locais devido a efeitos estocásticos. Mediante esta problemática, este trabalho debruçou-se sobre um único objectivo principal: a avaliação do impacte das rodovias e do tráfego, na densidade das aves de rapina nocturnas. Este estudo foi efectuado na região Alentejana, abrangendo uma área de cariz tipicamente mediterrânico, delimitada pelas localidades de Montemor-o-Novo, Arraiolos e Évora, sendo seccionada por 143 quilómetros de estradas, divididas em autoestrada, rodovias com elevada e reduzida densidade de tráfego. A monitorização das rapinas nocturnas foi conduzida em dois anos amostrais (2005 e 2007), tendo sido focalizada sobretudo em duas espécies de Strigiformes, a Coruja­ do-mato Strix aluco e o Mocho-galego Athene noctua, recorrendo ao uso de playbacks com reprodução de vocalizações de indivíduos conspecíficos. Foram usadas 32 variáveis explicativas integradas em três grandes grupos: variáveis de estrada, métricas da paisagem, uso do solo, tendo sido analiticamente testadas, recorrendo à aplicação de Modelos Lineares Generalizados. Os principais resultados obtidos demonstram que as variáveis de estrada, aliadas à densidade de tráfego e ruído inerente à sua circulação, são provavelmente, responsáveis por um comportamento de repulsa das espécies de aves de rapina nocturnas em estudo, apresentando estas densidades mais elevadas longe de áreas antropicamente perturbadas e, portanto, de menor qualidade que se encontram adjacentes às rodovias. Todavia a presença de habitat favorável a estas rapaces é provavelmente o descritor com maior poder estatístico no que concerne à sua distribuição e densidade, sendo os montados densos e a presença de zonas agrícolas de sequeiro, positivamente correlacionadas, respectivamente com a densidade de casais reprodutores de Coruja-do-mato e Mocho-galego. Mediante a observação dos resultados será veemente a aplicação de medidas de mitigação específicas, que fundamentalmente considerem o afastamento dos efectivos populacionais longe das estradas e tráfego, conservando e assegurando as características estruturais, requisitos e qualidade dos habitats, de modo a incrementar e garantir a viabilidade e densidade das populações, fidelizando a territorialidade e permanência destas aves nestas áreas. Adicionalmente deverá investir-se na conectividade das manchas de paisagem fragmentada pelas rodovias, criando opções de conservação estratégicas, em zonas ecologicamente mais sensíveis, que não somente minimizem o efeito de repulsa reconhecido nestas aves, mas também os níveis de mortalidade por atropelamento, tornando os ecossistemas mais funcionais para a sobrevivência destes rapaces. ABSTRACT; Roads and traffic are the most conspicuous and pervasive human creation, being the great responsible for fragmentation and habitats destruction, reducing animal movement through landscape, which implies decrease of gene flow and loss of variability that can fragmented populations, thus reducing their sizes and densities. All deleterious impacts associated with roads are clearly visible in vertebrates, where owls aren't exception, being frequent victims of road mortality, since they can use roadside habitats and edges for hunting, nesting or dispersal corridors through the landscape, being nowadays one of the most recent and important causes of non­natural mortality in owls and has been recognized as one of the largest conservation problems affecting this group. However, the attractive and avoidance effect of roads and his edges on owls creates a barrier effect that limits dynamics, behaviour and breeding density of resident species, recognizing that possible isolation, could compromise populations survival, make them more vulnerable to high risks of local extinction due to stochastic effects. Despite that, several authors suggest that owls use roads to hunt, as marginal habitats, or for navigation corridors through the landscape ln this context, the major aims of this study was to verify if there are negative effects of roads on the density of owls, considering traffic as an influencing factor. This study was conducted in Alentejo, covering a typical Mediterranean area, including three main localities Montemor-o-Novo, Évora and Arraiolos, being sectioned by 143 km of roads, including highway, roads with high traffic density, and the remaining with low traffic density. The owl census was conducted in two sampling years (2005 and 2007) and was focused mainly on Little owl Athene noctua and Tawny Owl Strix aluco species, using the playback technique, with conspecific calls. We used 32 explanatory variables, mainly included in three groups: road variables, landscape metrics and land use, having been analytically tested, with application of Generalised Linear Models. The main results show that noisy roads with high traffic density are probably the most responsible for the avoidance behaviour of owls, under the study area, showing density depression near high anthropogenic disturbed areas adjacent to roads. However, the presence of habitat quality to these birds is probably the descriptor with greater statistical power, considering its distribution and density, with the dense oak woodland and croplands and arable lands, positively correlated, respectively with Tawny owl and Little owl density. ln consequence, the great conservation effort should be done in order to keep breeding populations away from roads and traffic, ensuring the structural features, requirements and quality of its habitats in order to enhance and ensure the viability and density of owl's populations in these areas. ln addition, it is important to invest in connectivity between roadside fragmented patches, creating strategic conservation options, in sensitive areas, which minimize the avoidance effect, recognized in owls, but also road-kill levels, making ecosystems more functional to survival of these top predators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the implications of forest fragmentation for conservation of leaf-litter lizards the importance of fragment size, corridors and forest structure was examined in 20 forest fragments and six localities within a continuous forest in the Atlantic Plateau of Sao Paulo state, Brazil. The fragments were 2-276 ha in area and had different degrees of connectivity depending on the presence or absence of corridors. Two species of lizards were dominant, Ecpleopus gaudichaudii and Enyalius perditus. Variation in forest structure among sites was important only in explaining the abundance of E. perditus. Regardless of variation in forest structure, lizard species composition, total lizard abundance, number of species and abundance of E. perditus were sensitive to fragmentation per se but not to fragment size or corridor linkage. The inhospitable matrix surrounding fragments is probably what determines the presence and abundance of E. perditus and the high er lizard richness in continuous forests. These conditions may have prevented lizard species from recolonizing the forest fragments. Our results emphasize that the conservation of this leaf-litter fauna depends on the maintenance of large tracts of continuous forests and not on the size of fragments or on the presence of forest connections. Strategies for conservation of leaf-litter lizards in such highly fragmented Atlantic Forest landscapes should consider the enlargement of landscape connectivity between fragments and continuous forest, allowing the latter areas to act as a source of individuals for fragments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss and fragmentation of habitat can disrupt genetic exchange between populations, which is reflected in changes to the genetic structure of populations. The Grey-crowned Babbler (Pomatostomus temporalis) is a cooperatively breeding woodland bird, once common and widespread in south-eastern Australia. The species has suffered population declines of >90% across its southern distribution as a result of loss and fragmentation of habitat. We investigated patterns of genetic diversity and population structure of Grey-crowned Babblers in fragmented habitats at the southernmost extent of its range. We sampled blood from 135 individual Babblers from 39 groups stratified into six subpopulations in three regions. Genotypic data were used to estimate genetic diversity, population substructure, local relatedness and dispersal patterns. Individuals showed high heterozygosity within regions, and varying numbers of private alleles among regions suggested differences in levels of connectivity between regions. Four genetic clusters revealed population substructure consistent with treeless landscapes acting as strong barriers to gene flow. In contrast to previous studies,we identified a male-biased dispersal pattern and significant isolation-by-distance patterns for females at fine spatial scales. We recommend that conservation plans for this species incorporate opportunities to increase and enhance corridor areas to facilitate genetic exchange among subpopulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.