988 resultados para cytosolic Ca2 levels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous investigations have demonstrated large increases in y-amino butyrate (GABA) levels in response to a variety of stresses such as touch or cold shock (Wallace et ale 1984) Circumstantial evidence indicating a role of Ca2 + in these increases includes elevated Ca2+ levels in response to touch and cold shock (Knight et ale 1991), and the demonstration of a calmodulin binding domain on glutamate decarboxylase (GAD), the enzyme responsible for GABA synthesis (Baum et al 1993) In the present study the possible role of Ca2+ and calmodulin in stimulation of GAD and subsequent GABA accumulation was examined using asparagus mesophyll cells. Images of cells loaded with the Ca2+ indicator Fluo-3 revealed a rapid and transient increase in cytosolic Ca2+ in response to cold shock. GABA levels increased by 106% within 15 min. of cold shock. This increase was inhibited 70% by the calmodulin antagonist W7, and 42% by the Ca2+ channel blocker La3+.. Artificial elevation of intracellular Ca2+ by the Ca2+ionophore A23187 resulted in an 61% increase in GABA levels. Stimulation of GABA synthesis by ABA resulted in an 83% increase in GABA levels which was inhibited 55% by W7. These results support the hypothesis that cold shock stimulates Ca2+ entry into the cytosol of the cells which results in Ca2+/calmodulin mediated activation of GAD and consequent GABA synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways underlying its survival within the host. Methods: Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca2+ signalling in Plasmodium berghei and Plasmodium yoelii malaria parasites were investigated. Results: The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 mu M) and PPADS (50 mu M) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100, 200 and 500 mu M), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 mu M) to isolated parasites previously loaded with Fluo4/AM in a Ca2+-containing medium led to an increase in cytosolic calcium. This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 mu M), TNP-ATP (50 mu M) or the purinergic blockers KN-62 (10 mu M) and Ip5I (10 mu M). Incubating P. berghei infected cells with KN-62 (200 mu M) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 mu M) led to an increase in rings forms (82% +/- 4, n = 11) and a decrease in trophozoite forms (18% +/- 4, n = 11). Conclusions: The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that MSP1 is one target in this pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue light regulates plant growth and development, and three photoreceptors, CRY1, CRY2, and NPH1, have been identified. The transduction pathways of these receptors are poorly understood. Transgenic plants containing aequorin have been used to dissect the involvement of these three receptors in the regulation of intracellular Ca2+. Pulses of blue light induce cytosolic Ca2+ transients lasting about 80 s in Arabidopsis and tobacco seedlings. Use of organelle-targeted aequorins shows that Ca2+ increases are limited to the cytoplasm. Blue light treatment of cry1, cry2, and nph1 mutants showed that NPH1, which regulates phototropism, is largely responsible for the Ca2+ transient. The spectral response of the Ca2+ transient is similar to that of phototropism, supporting NPH1 involvement. Furthermore, known interactions between red and blue light and between successive blue light pulses on phototropic sensitivity are mirrored in the blue light control of cytosolic Ca2+ in these seedlings. Our observations raise the possibility that physiological responses regulated by NPH1, such as phototropism, may be transduced through cytosolic Ca2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustained (noninactivating) outward-rectifying K+ channel currents have been identified in a variety of plant cell types and species. Here, in Arabidopsis thaliana guard cells, in addition to these sustained K+ currents, an inactivating outward-rectifying K+ current was characterized (plant A-type current: IAP). IAP activated rapidly with a time constant of 165 ms and inactivated slowly with a time constant of 7.2 sec at +40 mV. IAP was enhanced by increasing the duration (from 0 to 20 sec) and degree (from +20 to 100 mV) of prepulse hyperpolarization. Ionic substitution and relaxation (tail) current recordings showed that outward IAP was mainly carried by K+ ions. In contrast to the sustained outward-rectifying K+ currents, cytosolic alkaline pH was found to inhibit IAP and extracellular K+ was required for IAP activity. Furthermore, increasing cytosolic free Ca2+ in the physiological range strongly inhibited IAP activity with a half inhibitory concentration of 94 nM. We present a detailed characterization of an inactivating K+ current in a higher plant cell. Regulation of IAP by diverse factors including membrane potential, cytosolic Ca2+ and pH, and extracellular K+ and Ca2+ implies that the inactivating IAP described here may have important functions during transient depolarizations found in guard cells, and in integrated signal transduction processes during stomatal movements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramide (a sphingolipid) and reactive oxygen species are each partly responsible for intracellular signal transduction in response to a variety of agents. It has been reported that ceramide and reactive oxygen species are intimately linked and show reciprocal regulation [Liu, Andreieu-Abadie, Levade, Zhang, Obeid and Hannun (1998) J. Biol. Chem. 273, 11313-11320]. Utilizing synthetic, short-chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide formation or using stimulation of CD95 to induce ceramide formation, we found that the principal redox-altering property of ceramide is to lower the [peroxide]cyt (cytosolic peroxide concentration). Apoptosis of Jurkat T-cells, primary resting and phytohaemagglutinin-activated human peripheral blood T-lymphocytes was preceded by a loss in [peroxide]cyt, as measured by the peroxide-sensitive probe 2,7-dichlorofluorescein diacetate (also reflected in a lower rate of superoxide dismutase-inhibitable cytochrome c reduction), and this was not associated with a loss of membrane integrity. Where growth arrest of U937 monocytes was observed without a loss of membrane integrity, the decrease in [peroxide]cyt was of a lower magnitude when compared with that preceding the onset of apoptosis in T-cells. Furthermore, decreasing the cytosolic peroxide level in U937 monocytes before the application of synthetic ceramide by pretreatment with either of the antioxidants N-acetyl cysteine or glutathione conferred apoptosis. However, N-acetyl cysteine or glutathione did not affect the kinetics or magnitude of ceramide-induced apoptosis of Jurkat T-cells. Therefore the primary redox effect of cellular ceramide accumulation is to lower the [peroxide]cyt of both primary and immortalized cells, the magnitude of which dictates the cellular response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of ANG II on intracellular pH (pH(i)) recovery rate and AT(1) receptor translocation was investigated in transfected MDCK cells. The pHi recovery rate was evaluated by fluorescence microscopy using the fluorescent probe BCECF-AM. The human angiotensin II receptor isoform 1 (hAT(1)) translocation was analyzed by immunofluorescence and confocal microscope. Our data show that transfected cells in control situation have a pHi recovery rate of 0.219 +/- 0.017 pH U/min (n = 11). This value was similar to nontransfected cells [0.211 +/- 0.009 pH U/min (n = 12)]. Both values were significantly increased with ANG II (10(-9) M) but not with ANG II (10(-6) M). Losartan (10(-7) M) and dimethyl-BAPTA-AM (10(-7) M) decreased significantly the stimulatory effect of ANG II (10(-9) M) and induced an increase in Na+/H+ exchanger 1 (NHE-1) activity with ANG II (10(-6) M). Immunofluorescence studies indicated that in control situation, the hAT(1) receptor was predominantly expressed in cytosol. However, it was translocated to plasma membrane with ANG II (10(-9) M) and internalized with ANG II (10(-6) M). Losartan (10(-7) M) induced hAT(1) translocation to plasma membrane in all studied groups. Dimethyl-BAPTA-AM (10(-7) M) did not change the effect of ANG II (10(-9) M) on the hAT(1) receptor distribution but induced its accumulation at plasma membrane in cells treated with ANG II (10(-6) M). With ionomycin (10(-6) M), the receptor was accumulated in cytosol. The results indicate that, in MDCK cells, the effect of ANG II on NHE-1 activity is associated with ligand binding to AT(1) receptor and intracellular signaling events related to AT(1) translocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central core disease (CCD) is a human congenital myopathy characterized by fetal hypotonia and proximal muscle weakness that is linked to mutations in the gene encoding the type-1 ryanodine receptor (RyR1). CCD is thought to arise from Ca2+-induced damage stemming from mutant RyR1 proteins forming leaky sarcoplasmic reticulum (SR) Ca2+ release channels. A novel mutation in the C-terminal region of RyR1 (I4898T) accounts for an unusually severe and highly penetrant form of CCD in humans [Lynch, P. J., Tong, J., Lehane, M., Mallet, A., Giblin, L., Heffron, J. J., Vaughan, P., Zafra, G., MacLennan, D. H. & McCarthy, T. V. (1999) Proc. Natl. Acad. Sci. USA 96, 41644169]. We expressed in skeletal myotubes derived from RyR1-knockout (dyspedic) mice the analogous mutation engineered into a rabbit RyR1 cDNA (I4897T). Here we show that homozygous expression of I4897T in dyspedic myotubes results in a complete uncoupling of sarcolemmal excitation from voltage-gated SR Ca2+ release without significantly altering resting cytosolic Ca2+ levels, SR Ca2+ content, or RyR1-mediated enhancement of dihydropyridine receptor (DHPR) channel activity. Coexpression of both I4897T and wild-type RyR1 resulted in a 60% reduction in voltage-gated SR Ca2+ release, again without altering resting cytosolic Ca2+ levels, SR Ca2+ content, or DHPR channel activity. These findings indicate that muscle weakness suffered by individuals possessing the I4898T mutation involves a functional uncoupling of sarcolemmal excitation from SR Ca2+ release, rather than the expression of overactive or leaky SR Ca2+ release channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing evidence suggests that changes in cytosolic Ca2+ levels and phosphorylation play important roles in the regulation of stomatal aperture and as ion transporters of guard cells. However, protein kinases responsible for Ca2+ signaling in guard cells remain to be identified. Using biochemical approaches, we have identified a Ca2+-dependent protein kinase with a calmodulin-like domain (CDPK) in guard cell protoplasts of Vicia faba. Both autophosphorylation and catalytic activity of CDPK are Ca2+ dependent. CDPK exhibits a Ca2+-induced electrophoretic mobility shift and its Ca2+-dependent catalytic activity can be inhibited by the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. Antibodies to soybean CDPK cross-react with CDPK. Micromolar Ca2+ concentrations stimulate phosphorylation of several proteins from guard cells; cyclosporin A, a specific inhibitor of the Ca2+-dependent protein phosphatase calcineurin enhances the Ca2+-dependent phosphorylation of several soluble proteins. CDPK from guard cells phosphorylates the K+ channel KAT1 protein in a Ca2+-dependent manner. These results suggest that CDPK may be an important component of Ca2+ signaling in guard cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quiescent rat thymocytes were stimulated to divide by a variety of agents. One such mitogen was the neurotransmitter acetylcholine which exhibited a biphasic action. Interaction with low affinity nicotinic receptors was linked with an obligatory requirement for magnesium ions whereas combination with high affinity muscarinic receptors induced mitosis only if calcium ions were present in the medium. Binding of acetylcholine to its muscarinic receptor enhanced calcium influx and increased intracellular calcium levels causing calmodulin activation, a necessary prelude to DNA synthesis and mitosis. Nicotinic receptor activation may be associated with a magnesium influx and stimulation of cells in a calmodulin-independent fashion. Parathyroid hormone and its analogues exhibited only a monophasic mitogenic action. This response was linked to calcium influx, a rise in cytosolic calcium and calmodulin activation. Parathyroid hormone did not stimulate adenylate cyclase in thymocytes and decreased cellular cyclic AMP concentrations. Picomolar amounts of interleukin-2 (IL-2) also stimulated division in thymocytes derived from 3-month old rats by binding to high affinity receptors. The response in thymocytes from newborn and foetal animals was greater reflecting the larger proportion of cells bearing receptors at this age. The mitogenic effect of IL-2 was abolished by a monoclonal antibody directed against the IL-2 receptor. Injections of IL-2 itself or the administration of IL-2 secreting activated syngeneic spleen cells also stimulated proliferation of both thymus and bone marrow cells in vivo. Likewise immunisation with pertussis toxin, which enhances endogenous IL2 production, also increased mitosis in these tissues. Calcium influx, increased cytosolic Ca2+ levels and calmodulin activation are associated features of the mitogenic action of IL-2. Interleukin-1 was also found to be mitogenic in thymic lymphocyte cultures. The responses to this mitogen and to parathyroid hormone and acetylcholine were not inhibited by the anti-IL2 receptor antibody suggesting that the thymic lymphocyte bears discrete receptors for these agents. Subtle interactions of hormones, neurotransmitters and interleukins may thus contribute to the turnover and control of lymphoid cells in the thymus and perhaps bone-marrow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the ciliate Paramecium, a variety of well characterized processes are regulated by Ca2+, e.g. exocytosis, endocytosis and ciliary beat. Therefore, among protozoa, Paramecium is considered a model organism for Ca2+ signaling, although the molecular identity of the channels responsible for the Ca2+ signals remains largely unknown. We have cloned - for the first time in a protozoan - the full sequence of the gene encoding a putative inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) receptor from Paramecium tetraurelia cells showing molecular characteristics of higher eukaryotic cells. The homologously expressed Ins(1,4,5)P3-binding domain binds [3H]Ins(1,4,5)P3, whereas antibodies unexpectedly localize this protein to the osmoregulatory system. The level of Ins(1,4,5)P3-receptor expression was reduced, as shown on a transcriptional level and by immuno-staining, by decreasing the concentration of extracellular Ca2+ (Paramecium cells rapidly adjust their Ca2+ level to that in the outside medium). Fluorochromes reveal spontaneous fluctuations in cytosolic Ca2+ levels along the osmoregulatory system and these signals change upon activation of caged Ins(1,4,5)P3. Considering the ongoing expulsion of substantial amounts of Ca2+ by the osmoregulatory system, we propose here that Ins(1,4,5)P3 receptors serve a new function, i.e. a latent, graded reflux of Ca2+ to fine-tune [Ca2+] homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 mu M) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+](i)) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca-2](i) concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+](i) increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body -hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anoxia induces a rapid elevation of the cytosolic Ca2+ concentration ([Ca2+]cyt) in maize (Zea mays L.) cells, which is caused by the release of the ion from intracellular stores. This anoxic Ca2+ release is important for gene activation and survival in O2-deprived maize seedlings and cells. In this study we examined the contribution of mitochondrial Ca2+ to the anoxic [Ca2+]cyt elevation in maize cells. Imaging of intramitochondrial Ca2+ levels showed that a majority of mitochondria released their Ca2+ in response to anoxia and took up Ca2+ upon reoxygenation. We also investigated whether the mitochondrial Ca2+ release contributed to the increase in [Ca2+]cyt under anoxia. Analysis of the spatial association between anoxic [Ca2+]cyt changes and the distribution of mitochondrial and other intracellular Ca2+ stores revealed that the largest [Ca2+]cyt increases occurred close to mitochondria and away from the tonoplast. In addition, carbonylcyanide p-trifluoromethoxyphenyl hydrazone treatment depolarized mitochondria and caused a mild elevation of [Ca2+]cyt under aerobic conditions but prevented a [Ca2+]cyt increase in response to a subsequent anoxic pulse. These results suggest that mitochondria play an important role in the anoxic elevation of [Ca2+]cyt and participate in the signaling of O2 deprivation.