918 resultados para cortisol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress disrupts the preovulatory luteinizing hormone (LH) surge in females, but the mechanisms are unknown. We tested the hypothesis that cortisol compromises the ability of estrogen to induce a preovulatory-like LH surge in ovariectomized ewes in both the breeding and nonbreeding season. Luteinizing hormone surges were induced in ovariectomized ewes by treatment with progesterone followed by a surge-inducing estradiol-17β (E2) stimulus using a crossover design. The experiment was replicated in the breeding and nonbreeding seasons. Cortisol reduced the incidence of LH surges irrespective of season. Cortisol increased the latency from E2 stimulus to the onset of the surge in the breeding season only and suppressed the LH surge amplitude during both seasons (P < 0.01). We conclude that cortisol can interfere with the LH surge in several ways: delay, blunt, and in extreme cases prevent the E2-induced LH surge. Furthermore, the effect of cortisol to delay the E2-induced LH surge is more pronounced in the breeding season. These results show that cortisol disrupts the positive feedback effect of E2 to trigger an LH surge and suggest the involvement of multiple mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments were conducted to test the hypothesis that cortisol interferes with the positive feedback action of estradiol that induces the luteinizing hormone (LH) surge. Ovariectomized sheep were treated sequentially with progesterone and estradiol to create artificial estrous cycles. Cortisol or vehicle (saline) was infused from 2 h before the estradiol stimulus through the time of the anticipated LH surge in the artificial follicular phase of two successive cycles. The plasma cortisol increment produced by infusion was ∼1.5 times greater than maximal concentrations seen during infusion of endotoxin, which is a model of immune/inflammatory stress. In experiment 1, half of the ewes received vehicle in the first cycle and cortisol in the second; the others were treated in reverse order. All ewes responded with an LH surge. Cortisol delayed the LH surge and reduced its amplitude, but both effects were observed only in the second cycle. Experiment 2 was modified to provide better control for a cycle effect. Four treatment sequences were tested (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-cortisol, cortisol-vehicle. Again, cortisol delayed but did not block the LH surge, and this delay occurred in both cycles. Thus, an elevation in plasma cortisol can interfere with the positive feedback action of estradiol by delaying and attenuating the LH surge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that cortisol infusion reduced the luteinizing hormone (LH) response to fixed hourly GnRH injections in ovariectomized ewes treated with estradiol during the non-breeding season (pituitary-clamp model). In contrast, cortisol did not affect the response to 2 hourly invariant GnRH injections in hypothalamo-pituitary disconnected ovariectomized ewes during the breeding season. To understand the differing results in these animal models and to determine if cortisol can act directly at the pituitary to suppress responsiveness to GnRH, we investigated the importance of the frequency of GnRH stimulus, the presence of estradiol and stage of the circannual breeding season. In experiment 1, during the non-breeding season, ovariectomized ewes were treated with estradiol, and pulsatile LH secretion was restored with i.v. GnRH injections either hourly or 2 hourly in the presence or absence of exogenous cortisol. Experiments 2 and 3 were conducted in hypothalamo-pituitary disconnected ovariectomized ewes in which GnRH was injected i.v. every 2 h. Experiment 2 was conducted during the non-breeding season and saline or cortisol was infused for 30 h in a cross-over design. Experiment 3 was conducted during the non-breeding and breeding seasons and saline or cortisol was infused for 30 h in the absence and presence of estradiol using a cross-over design. Samples were taken from all animals to measure plasma LH. LH pulse amplitude was reduced by cortisol in the pituitary clamp model with no difference between the hourly and 2-hourly GnRH pulse mode. In the absence of estradiol, there was no effect of cortisol on LH pulse amplitude in GnRH-replaced ovariectomized hypothalamo-pituitary disconnected ewes in either season. The LH pulse amplitude was reduced in both seasons in experiment 3 when cortisol was infused during estradiol treatment. We conclude that the ability of cortisol to reduce LH secretion does not depend upon the frequency of GnRH stimulus and that estradiol enables cortisol to act directly on the pituitary of ovariectomized hypothalamo-pituitary disconnected ewes to suppress the responsiveness to GnRH; this effect occurs in the breeding and non-breeding seasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used the hypothalamo-pituitary disconnected (HPD) sheep model to investigate direct pituitary actions of cortisol to suppress LH secretion in response to exogenous GnRH. We previously observed that, during the non-breeding season, treatment with cortisol did not suppress the LH response to GnRH in HPD gonadectomised rams or ewes.1 In the present experiment, we tested the effect of cortisol on the LH response to exogenous GnRH in gonadectomised HPD sheep during the breeding season. Using a cross-over design, HPD gonadectomised Romney Marsh rams (n = 6) and ewes (n = 5) received a saline or cortisol (250 μg/kg/h) infusion for 30 h on each of two days, one week apart. All animals were treated with 125 ng i.v. injections of GnRH every 2 h during a 6 h control period preceding the infusion and during the infusion. Jugular blood samples were taken during the control period and the first 6 h and last 6 h of the infusion (over 3 LH pulses). Mean plasma concentrations of LH and LH pulse amplitudes, driven by programmed GnRH injections, were similar in gonadectomised rams and ewes and there were no significant effects of saline infusion between the control periods or the saline infusion in either sex. The amplitude of LH pulses was significantly (P < 0.05) reduced in rams during the first 6 h of the cortisol infusion compared to the control period, but there were no effects of the cortisol infusion in ewes. These data show that, in the absence of sex steroids, there is a sex difference in the mechanism by which cortisol acts at the pituitary to reduce LH secretion in response to exogenous GnRH in HPD gonadectomized sheep during the breeding season. We conclude that the effect of cortisol to reduce secretion of LH involves an action on the pituitary, at least in gonadectomised rams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally agreed that stress can impair reproduction. Furthermore, it is often thought that cortisol, which is secreted during stress as a result of activation of the hypothalamo-pituitary adrenal axis, is associated with this stress-induced impairment of reproduction. It has been hypothesized that reproduction in females is particularly susceptible to disruption by acute stress during the series of endocrine events that induce estrus and ovulation. Nevertheless, we found no support for this conjecture when we subjected female pigs to repeated acute stress or repeated acute elevation of cortisol during the period leading up to estrus and ovulation. Conversely, studies have demonstrated that prolonged stress and sustained elevation of cortisol can disrupt reproductive processes in female pigs. Nevertheless, in each study that demonstrated this effect, there were some animals subjected to the prolonged stressor or the sustained elevation of cortisol in which the reproductive parameters that were measured were not affected by the treatment. We propose that reproduction in female pigs is resistant to the effects of acute or repeated acute stress or acute or repeated acute elevation of cortisol even if these occur during the series of endocrine events that induce estrus and ovulation. Furthermore, while reproductive processes in some individuals are compromised, reproduction in a proportion of female pigs appears to be resistant to the effects of prolonged stress or sustained elevation of cortisol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids can inhibit pulsatile LH secretion and can delay or even block the preovulatory LH surge. Previous work in ovariectomized ewes has indicated that cortisol can delay the estradiol-induced LH surge in an artificial follicular phase model but the results suggest this effect may be influenced by prior exposure to ovarian steroids. Here we tested the hypothesis that this disruptive effect of cortisol on the positive feedback action of estradiol is dependent on prior exposure to the ovarian steroidal milieu of the estrous cycle. Using long-term ovariectomized ewes, sequential artificial estrous cycles were created in the anestrous season by treatment and subsequent withdrawal of progesterone (CIDRs inserted for 9 d) followed by estradiol implants simulating the pre-ovulatory estradiol rise that induces the LH surge. Following the first artificial estrous cycle, a second cycle was initiated. Progesterone was again administered for 9 d followed by a second artificial follicular phase two weeks later. Beginning 2 hr prior to estradiol administration and ending at 40 hr, animals received either a cortisol infusion (elevate plasma levels to ∼170 ng/ml) or vehicle. Jugular blood was sampled hourly to assess occurrence and timing of the LH surge. Four different treatment sequences were tested (Cycle 1-Cycle 2): cortisol-cortisol; vehicle-cortisol; cortisol-vehicle; and vehicle-vehicle (n=5-6/sequence). If prior exposure to the ovarian steroidal milieu of the estrous cycle was necessary for cortisol to interfere with the positive feedback action of estradiol, then we would predict that cortisol would only delay the LH surge when it was delivered in Cycle 2 but not Cycle 1. Our results failed to support this prediction. Cortisol delayed the surge in both cycles (p<0.01), and the extent of the delay was the same in both Cycles 1 and 2 (4 hrs). Cortisol did not significantly affect surge amplitude in either cycle. These findings reinforce our previous conclusion that cortisol can delay the estradiol-induced LH surge but they do not support the hypothesis that this action of cortisol is dependent upon exposure to the ovarian steroidal milieu of the previous estrous cycle. (NIH-HD-30773)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-factor experiment was carried out to investigate the change in skin colour and plasma cortisol response of cultured Australian snapper Pagrus auratus to a change in background colour. Snapper (mean weight=437 g) were held in black or white tanks and fed diets containing 39 mg unesterified astaxanthin kg−1 for 49 days before being transferred from white tanks to black cages (WB) or black tanks to white cages (BW). Skin colour values [L* (lightness), a* (redness) and b* (yellowness)] of all snapper were measured at stocking (t=0 days) and from cages of fish randomly assigned to each sampling time at 0.25, 0.5, 1, 2, 3, 5 and 7 days. Plasma cortisol was measured in anaesthetized snapper following colour measurements at 0, 1 and 7 days. Fish from additional black-to-black (BB) and white-to-white (WW) control treatments were also sampled for colour and cortisol at those times. Rapid changes occurred in skin lightness (L* values) after altering background colour with maximum change in L* values for BW and WB treatments occurring within 1 day. Skin redness (a*) of BW snapper continued to steadily decrease over the 7 days (a*=7.93 × e−0.051 × time). Plasma cortisol concentrations were highest at stocking when fish were held at greater densities and were not affected by cage colour. The results of this study suggest that transferring dark coloured snapper to white cages for 1 day is sufficient to affect the greatest benefit in terms of producing light coloured fish while minimizing the reduction in favourable red skin colouration.